政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118240
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113961/144987 (79%)
Visitors : 51986106      Online Users : 737
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118240


    Title: 隨機利率下可解約利率變動型壽險評價分析
    The Valuation Analysis of Floating-rate Life Insurance under Stochastic Interest Rates
    Authors: 林靜吟
    Lin, Ching-Yin
    Contributors: 林士貴
    蔡政憲

    Lin, Shih Kuei
    Tsai, Cheng-Hsien

    林靜吟
    Lin, Ching-Yin
    Keywords: 條件期望值
    利變型保單
    Hull and white
    Conditional expectation
    CRR
    Floating-rate insurance policy
    Date: 2018
    Issue Date: 2018-07-03 17:26:44 (UTC+8)
    Abstract: 本文在Hull and White隨機利率模型之下計算利率變動型壽險的公平保費及其隱含之解約選擇權。本文提出遞迴公式並逆向計算保單價值,應用條件期望值的方法,建構二維樹狀結構計算利變型壽險的保費。利用本文提出的二維樹狀結構評價,不但具有精確性與收斂特性,計算上也十分有效率。本文也同時分析影響公平保費與解約選擇權價值之各項因子,包含利率波動度,資產波動度,利率和資產相關係數等。分析指出當利率波動劇烈時,利率變動型壽險價值與解約選擇權價值會隨著增加;區隔資產帳戶價值波動度劇烈時,利率變動型壽險價值會隨著減少而解約選擇權價值會隨著增加;最後,利率和區隔資產帳戶價值相關係數越高,利率變動型壽險價值越低,而解約選擇權價值越高。本文提出之評價方法與數值分析結果可供於保險公司評價利率變動型商品之參考。
    This paper provides the fair valuation of a floating-rate life insurance policy embedded with surrender options under Hull and White stochastic interest rate models. This paper proposes a recursive formula to implement the backward computation and a two dimensions tree structure is constructed by the Conditional Expectation method to value the fair premiums of floating-rate life insurance policy. By using the proposed algorithm, we analyze the factors affecting the value of premiums and surrender options. Numerical analysis indicates that high interest rate volatility enhances both the premiums and surrender options values entitled to the policyholder. Moreover, when the value of segregate asset account has a high degree of volatility, the premiums of floating-rate life insurance will decrease and the value of surrender options will increase. Finally, the higher the correlation coefficient between the interest rate and the value of segregate asset account, the lower the premiums of floating-rate life insurance, conversely, the higher the value of the surrender options. These results present some suggestions for insurance companies to issue a floating-rate life insurance contract embedded with surrender options.
    Reference: 一、 中文文獻
    [1] 李明黛. (2002). 利率風險對公司經營之影響:台灣壽險市場之實證研究. 政治大學風險管理與保險學系碩士學位論文.
    [2] 林士貴, 張智凱, & 廖四郎. (2008). 可解約分紅保單之遞迴評價公式. 財務金融學刊, 16(3), 107-147.
    [3] 賴詩婷. (2011). 隨機利率模型下分紅保單之解約選擇權評價. 逢甲大學統計與精算學系碩士學位論文.
    [4] 王禕鴻. (2015). 利率變動型壽險探討. 中央大學財務金融學系碩士在職專班學位論文.

    二、 英文文獻
    [1] Bacinello, A. R., & Ortu, F. (1993). Pricing equity-linked life insurance with endogenous minimum guarantees. Insurance: Mathematics and Economics, 12(3), 245-257.
    [2] Bacinello, A. R. (2001). Fair pricing of life insurance participating policies with a minimum interest rate guaranteed. ASTIN Bulletin: The Journal of the IAA, 31(2), 275-297.
    [3] Bacinello, A. R. (2003a). Fair valuation of a guaranteed life insurance participating contract embedding a surrender option. Journal of Risk and Insurance, 70(3), 461-487.
    [4] Bacinello, A. R. (2003b). Pricing guaranteed life insurance participating policies with annual premiums and surrender option. North American Actuarial Journal, 7(3), 1-17.
    [5] Bacinello, A. R. (2005). Endogenous model of surrender conditions in equity-linked life insurance. Insurance: Mathematics and Economics, 37(2), 270-296.
    [6] Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
    [7] Briys, E., & De Varenne, F. (1997). On the risk of insurance liabilities: debunking some common pitfalls. Journal of Risk and Insurance, 673-694.
    [8] Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (2005). A theory of the term structure of interest rates. In Theory of Valuation, 129-164.
    [9] Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229-263.
    [10] Hao, J. C. (2011). The pricing for interest sensitive products of life insurance firms. Scientific Research, 2, 194-202.
    [11] Hilliard, J., A. Schwartz, and A. Tucker (1996). Bivariate binomial options pricing with generalized interest rate processes. The Journal of Financial Research, 19, 585-602.
    [12] Ho, T. S., Stapleton, R. C., & Subrahmanyam, M. G. (1995). Multivariate binomial approximations for asset prices with nonstationary variance and covariance characteristics. The Review of Financial Studies, 8(4), 1125-1152.
    [13] Ho, T. S., & LEE, S. B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011-1029.
    [14] Huang, H. C. & Lee, Y. T. (2008). The risk management of interest rate sensitivity policies: Interest rate declaring strategies and investment. 保險專刊, 24, 1-28.
    [15] Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573-592.
    [16] Hull, J., & White, A. (1993). One-factor interest-rate models and the valuation of interest-rate derivative securities. Journal of Financial and Quantitative Analysis, 28(2), 235-254.
    [17] Hull, J., & White, A. (1994). Numerical procedures for implementing term structure models I: Single-factor models. Journal of Derivatives, 2(1), 7-16.
    [18] Hull, J., & White, A. (2008). Dynamic models of portfolio credit risk: A simplified approach. Journal of Derivatives, 15(4), 9.
    [19] Nelson, D. and K. Ramaswamy (1990). Simple binomial processes as diffusion approximations in financial models, The Review of Financial Studies, 3, 393-430.
    [20] Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial Economics, 5(2), 177-188.
    [21] Wei, J. (1993). Valuing American equity options with a stochastic interest rate: A note, The Journal of Financial Engineering, 2, 195-206.
    Description: 碩士
    國立政治大學
    金融學系
    105352028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352028
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MB.001.2018.F06
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File SizeFormat
    202801.pdf1379KbAdobe PDF2299View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback