Reference: | [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8. [2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12. [3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html. [4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228. [5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266. [6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell. [7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825. [8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation. [9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/. [10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009. [11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223. [12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271. [13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439. [14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432. [15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314. [16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188. [17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958. [18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106. [19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707. [20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995. [21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672. [22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918. [23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229. [24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437. [25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966. [26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550. [27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672. [28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg. [29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105. [30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001. [31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92. |