English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804769      Online Users : 848
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/117444
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/117444


    Title: 應用情感分析於產品比較與品牌推薦系統-以美妝產品為例
    Application of Sentiment Analysis in Product Comparison and Brand Recommendation System - Taking Cosmetics as an Example
    Authors: 俞舒禔
    Yu, Shu-Ti
    Contributors: 鄭宇庭
    郭訓志

    Cheng , Yu Ting
    Kuo , Hsun Chih

    俞舒禔
    Yu, Shu-Ti
    Keywords: 文字探勘
    Word2vec
    CRF
    PMI
    情感分析
    Date: 2018
    Issue Date: 2018-06-01 17:34:45 (UTC+8)
    Abstract: 近年來,社群商業智慧(SBI, Social Business Intelligence)興盛,且IBM公司指出「在現今社會當中早已不再是B to B(企業對企業)或是B to C(企業對客戶)的關係,而是P to P(人對人)」,多數企業看準了P to P消費者互動模式之繁榮而從中衍生出龐大商機。因此本研究欲藉由三大美妝評論網站蒐集之文字資料進行文字探勘,將非結構化資料轉為結構化資料後,利用字典比對法搭配機器學習方法,自定義詞典後透過Google於2013年開源之Word2vec深度學習方法擴建辭典,接著透過CRF詞性辨識方法建模,用以辨識出形容詞與屬性詞,以便後續進行PMI相似性比對,此法可大幅降低自然語言處理在分析上的人工作業時間,本研究在情感分析上設計一套專屬於美妝產品情感取向之算分方式且對文章進行分類(正面、中性、負面),所建構之情感取向辨識系統預測文章之準確率約為78 %;本研究之另一研究為利用統計方法將單篇美妝文章對於各屬性辭典(顏色、味道、效果、價格)給予星等。從消費者角度出發,消費者可透過選定之品牌以及產品畫出雷達圖進行比較,進而得知自家美妝產品以及他牌美妝產品的優缺點,透過顏色、味道、效果以及價錢上的平均星等數,可以迅速得知哪一品牌的美妝產品較受美妝部落客以及廣大網路評論者的歡迎;從美妝品牌公司角度出發,若在某項屬性之平均星等數與他牌有所差距,可自我檢討並改進,若在某屬性有較高的平均星等數,可維持其優良的部分並提升自家美妝產品的競爭力。
    Reference: 王志瑋,2011,數位口碑探勘法於商品推薦之研究,國立成功大學資訊管理研究所碩士論文。
    何偉豪,2010,使用最大熵值法於產品評論之評價等級預測-以Amazon 為例,國立東華大學數為知識管理碩士學位學程。
    李日斌,2014,探討臺灣網民對鄰國的情感,國立中山大學資訊管理學系碩士論文。
    李啟菁,2010,中文部落格文章之意見分析,國立台北科技大學資訊工程系研究所碩士論文。
    李淑惠,2014,運用文字探勘技術於口碑分析之研究,東吳大學資訊管理學系論文。
    張育蓉,2012,使用情緒分析於圖書館使用者滿意度評估之研究,國立中興大學圖書資訊學研究所碩士學位論文。
    張莊平,2011,中文文法剖析應用於電影評論之意見情感分類,國立臺灣師範大學資訊工程研究所碩士論文。
    陳立,2009,中文情感語意自動分類之研究,國立臺灣師範大學資訊工程研究所碩士論文。
    楊惠淳,2011,以主客觀分析與相互資訊檢索探討情感分析之準確度-以電影評論為例,國立臺北科技大學資訊與運籌管理研究所碩士論文。
    蕭瑞祥、姜青山、曹金豐、簡之文,2012,部落格文章情感分析之研究,私立淡江大學資訊管理學系。
    謝邦昌、鄭宇廷、謝邦彥、硬是愛數據應用股份有限公司,2017,玩轉社群:文字大數據實作,五南出版社。
    簡智宏,2015,應用文字探勘技術於概念股輿情與股價共同移動之研究-以蘋果供應鏈為例,國立政治大學資訊管理研究所碩士論文。
    鐘任明、李維平、吳澤民,2007,運用文字探勘於日內股價漲跌趨勢預測之研究,中華管理評論國際學報。

    Benamara, F., Cesarano, C., Picariello, A. & Subrahmanian. (2007). Sentiment analysis:Adjectives and adverbs are better than adjectives alone. In ICWSM Boulder, CO USA.
    Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G. & Reynar, J. (2008). Building a sentiment summarizer for local service reviews. In paper presented at the www 2008 workshop on NLP challenges in the information explosion era (NLPIX 2008), Beijing, April, 22.
    Bollen, J., Mao, H. & Zeng, X.(2010). Twitter mood predicts the stock market, Journal of computational science. Vol. 2, p.1-8.
    Culnan,M., McHugh, P. & Zubillaga, J.(2010).How large U.S. companies can use twitter and other social media to gain business value. MIS Quarterly Executive, 9(4), p.243-259.
    Dey, L., Haque, S. M., Khurdiya, A. & Shroff, G. (2011). Acquiring competitive intelligence from social media. In Proceedings of the 2011 joint workshop on multilingual OCR and analytics for noisy unstructured text data Article3.
    Gamon, M. (2004). Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In Proceedings of the 20th International Conference on Computational Linguistics, p.841.
    Gary, K., Jennifer, P. & Margaret, E. R.(2013). How Censorship in China Allows Government Criticism but Silences Collective Expression. American Political Science Review, 107, 2 (May), p.1-18. Copy at http://j.mp/2nxNUhk
    Gidofalvi, G.(2001). Using news articles to predict stock price movements. Department of Computer Science. University of California, San Diego.
    Governatori, G. & Iannella, R.(2011). A medeling and reasoning framework for social networks policies. Enterprise Information Systems, 5(1), p.145-167.
    Hassan, S., Yulan, H. & Harith, A.(2012). Semantic Sentiment Analysis of Twitter. In: Cudré-Mauroux P. et al. (eds) The Semantic Web – ISWC 2012. ISWC 2012. Lecture Notes in Computer Science, Vol. 7649.
    Kaplan, A. & Haenlein, M.(2010). User of the world, unite! The challenges and opportunities of social media. Business Horizons, 53, p.59-68.
    Ku, L. W. & Chen, H. H.(2007). Mining Opinions from the Web:Beyond Relevance Retrieval. Journal of American Society for Information Science and Technology, 58, p.1838-1850.
    Larsson, A. & Moe, H.(2011). Studying political microblogging: Twitter users in the 2010 Swedish election campaign. New Media and Society. Vol. 14, p.727-747.
    Lim, M.(2012). Clicks, cabs, and coffee houses: Social media and oppositional movements in Egypt, 2004-2011. Journal of Communication. Vol.62, p.231-248.
    Liu, Y., Huang, X., An, A. & Yu, X.(2007). ARSA: A sentiment-aware model for predicting sales performance using blogs. In Proceedings of the 30th annual international ACMSIGIR conference on research and development in information retrieval. p.607-614. New York.
    Liu, B.(2009). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, Vol.5, No.1, p.1-167.
    Manning, C. & Schutze, H.(1999). MITCogNet. Foundations of statistical natural language processing, Vol.59. MIT Press.
    Mostafa, M.(2013). More than words: Social networks’text mining for customer brand sentiments. Expert systems with applications, Vol.40, Issue 10, p.4241-4251.
    Mukherjee, S.(2012). Sentiment analysis-A literature survey, Indian Institute of Technology, Bombay.
    Na, J., Thet, T., & Khoo, C.(2010). Comparing sentiment expression in movie reviews from four online genres. Online Information Review. Vol. 34, p.317-338.
    Pang, B., Lee, L. & Viathyanathan, S.(2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceeding of the ACL-02 conference on empirical methods in natural language processing, Vol. 10, p. 79-86, Association for Computational Linguistics.
    Park, N., Kee, K. F. & Valenzuela, S. (2009). Being immersed in social networking environment:Facebook groups, uses and gratifications, and social outcomes. Cyber Psychology & Behavior, 12(6), p.729-733.
    Popescu, A., & Etzioni, O.(2005). Extracting product features and opinions from reviews. In Proceedings of the conference on human language technology and empirical methods in natural language processing, p.339-346. Association for Computational Linguistics.
    Schumaker, R. & Chen, H.(2006). Textual Analysis of Stock Market Prediction Using Financial News Articles. 12th Americas Conference on Information Systems (AMCIS).
    Thet, T., Na, J. & Khoo, C.(2008). Aspects-based sentiment analysis of movie reviews on discussion boards. Journal of Information Science. Vol. 36, p. 823-848.
    Tsantis, L. & Castellani, J.(2001).Enhancing learning environments through solution-based knowledge discovery tools, Journal of Special Education Technology,Vol.16, Issue 4, p.1-35.
    Tumasjan, A., Sprenger, T., Sandner, P. & Welpe, I.(2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review. Vol. 29, p.402-418.
    Turney, P. D.(2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, July, p.417-424.
    Wang, S. G., Wei, Y. J., Zhang,W., Li, D.Y. & Li, W.(2007). A hybrid method of feature selection for Chinese text sentiment classification. In Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, p.435-439.IEEE Computer Society.
    Williams, C. & Gulati, G.(2008). What is a social network worth? Facebook and vote share in the 2008 presidential primaries. In the annual meeting of the American political science association, p.1-17. Boston, MA: APSA.
    Yessenov, K. & Misailovic, S.(2009). Sentiment analysis of movie review comments. Methodology, p.1-17.
    Yi, J., Nasukawa, T., Bunescu, R. & Niblack, W.(2003). Sentiment analyzer: Extracting sentiment about a given topic using natural language-processing techniques. In proceedings of the 3rd IEEE international conference on data mining (ICDM’ 2003), p.427-434. Los Alamitos, CA.
    Yong, Y., Qiang Y., Guirong, X. & Wenyuan D.(2002). Transferring Naïve Bayes classifiers for text classification. In Conference of the American Association for Artificial Intelligence (AAAI).
    Zhang,W., Xu, H. & Wan, W.(2012). Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert System with Applications, Vol.39, Issue 11, p.10283-10291.
    Description: 碩士
    國立政治大學
    統計學系
    105354006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1053540061
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    006101.pdf1639KbAdobe PDF217View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback