English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50831129      Online Users : 758
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/116079
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/116079


    Title: 以使用者音樂聆聽記錄於音樂歌單推薦之研究
    Learning user music listening logs for music playlist recommendation
    Authors: 楊淳堯
    Yang, Chun Yao
    Contributors: 蔡銘峰
    Tsai, Ming Feng
    楊淳堯
    Yang, Chun Yao
    Keywords: 音樂歌單推薦
    圖形嵌入式表達式
    Music playlist recommendation
    Graph embedding
    Date: 2018
    Issue Date: 2018-03-02 11:49:29 (UTC+8)
    Abstract: 音樂歌單是由一組多首不同元素、風格的音樂所組成的,它包含了編輯者的個人品味以及因應主題、目的性產生而成。我們可以透過樂曲的律動、節奏、歌曲的主題精神,進而編輯一個相應契合的系列歌曲。當今的音樂收聽市場主要是在網路串流平台上進行隨時、隨地的聆聽,主要的平台有Spotify、Apple Music 以及KKBOX。各家業者不單只是提供使用者歌曲的搜索、單曲的聆聽,更提供訂閱專業歌單編輯者的歌單訂閱服務,甚至是讓一般的使用者參與歌單自訂編輯的過程。然而如何在有限的時間內針對使用者的聆聽習慣去介紹平台上豐富的音樂資源是個很大的挑戰。上述的過程我們稱之為推薦,而當前的音樂推薦研究大多是在對使用者進行相關歌曲的推薦,鮮少能進一步在更抽象層次上的歌單上進行推薦。這邊我們就此一推薦應用提供嵌入式向量表示法學習模型,在有著使用者、歌曲、歌單的異質性社交網路上,對使用者進行歌單的推薦。為了能有效的學習出歌單推薦的模型,我們更將使用者、歌單和歌曲的異質性圖形重組成二分圖(bipartite graph), 並在此圖形的邊上賦予不等的權重,此一權重是基於使用者隱式反饋獲得的。接著再透過隨機漫步(random walk),根據邊上的權值進行路徑的抽樣選取,最後再將路徑上經過的節點進行嵌入式向量表示法的學習。我們使用歐幾里德距離計算各節點表示法的鄰近關係,再將與使用者較為相關的歌單推薦給使用者。實驗驗證的部分,我們蒐集KKBOX 兩年份的資料進行模型訓練並進行推薦,並將推薦的結果與使用者所喜愛的歌單進行準確度(Precision)評估, 結果證實所得到的推薦效果較一般熱門歌單的推薦來的好,且為更具個人化的歌單推薦。
    Music playlist is crafted with a series of songs, in which the playlist creator has controlled over the vibe, tempo, theme, and all the ebbs and flows that come within the playlist. To provide a personalization service to users and discover suitable playlists among lots of data, we need an effective way to achieve this goal. In this paper, we modify a representation learning method for learning the representation of a playlist of songs, and then use the representation for recommending playlists to users. While there have been some well-known methods that can model the preference between users and songs, little has been done in the literature to recommend music playlists. In light of this, we apply DeepWalk, LINE and HPE to a user-song-playlist network. To better encode the network structure, we separate user, song, and playlist nodes into two different sets, which are grouped by the user and playlist set and song as the other one. In the bipartite graph, the user and playlist node are connected to their joint songs. By adopting random walks on the constructed graph, we can embed users and playlists via the common information between each other. Therefore, users can discover their favorite playlists through the learned representations. After the embedding process, we then use the learned representations to perform playlist recommendation task. Experiments conducted on a real-world dataset showed that these embedding methods have a better performance than the popularity baseline. In addition, the embedding method learns the informative representations and brings out the personal recommendation results.
    Reference: G. Adomavicius and A. Tuzhilin. Context-Aware Recommender Systems. Recommender Systems Handbook, Springer US, 2011, pages 217–253.
    J. A. Bullinaria and J. P. Levy. Extracting semantic representations from word cooccurrence statistics: a computational study. Behavior Research Methods, 39 3:510–26, 2007.
    C.-M. Chen, M.-F. Tsai, Y.-C. Lin, and Y.-H. Yang. Query-based music recommendations via preference embedding. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages 79–82. ACM, 2016.
    K. Choi, G. Fazekas, and M. B. Sandler. Understanding music playlists. CoRR, abs/1511.07004, 2015.
    J. R. Firth. A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (special volume of the Philological Society), 1952-59:1–32, 1957.
    J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1):5–53, Jan 2004.
    Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In In IEEE International Conference on Data Mining (ICDM 2008, pages 263–272, 2008.
    A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 142–150. Association for Computational Linguistics, 2011.
    T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781, 2013.
    T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013.
    T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751. Association for Computational Linguistics, 2013.
    B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710. ACM, 2014.
    S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology, 3(3):57:1–57:22, May 2012.
    J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proceedings of the 22Nd International Conference on Machine Learning, ICML ’05, pages 713–719. ACM, 2005.
    J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pages 1067–1077, Republic and Canton of Geneva, Switzerland, 2015. ACM.
    W. Y. Zou, R. Socher, D. M. Cer, and C. D. Manning. Bilingual word embeddings for phrase-based machine translation. In EMNLP, 2013.
    Description: 碩士
    國立政治大學
    資訊科學學系
    104753024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104753024
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302401.pdf1000KbAdobe PDF2528View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback