政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/116007
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113303/144284 (79%)
造訪人次 : 50820657      線上人數 : 755
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/116007


    題名: 加權範數最小變異數投資組合之實證應用:以台灣股市為例
    The Empirical Study of Weighted-Norm Minimum Variance Portfolios in Taiwan Stock Market
    作者: 莊丹華
    Jhuang, Dan-Hua
    貢獻者: 顏佑銘
    Yen, Yu-Min
    莊丹華
    Jhuang, Dan-Hua
    關鍵詞: 台灣50
    最小變異數投資組合
    加權懲罰範數
    Minimum variance portfolio
    Weighted-Norm penalty
    日期: 2017
    上傳時間: 2018-03-02 11:38:43 (UTC+8)
    摘要: 資產配置問題與方法一直是投資人所關心之重要課題。藉由不同之建構投資組合的方法尋找資產的最適權重分配,可使得投資人對所持有資產的管理變得更容易且具效率。在這些方法當中,最小變異數投資組合可滿足追求風險極小化之需求。本文亦從此出發,探討一種特殊的最小變異數投資組合:加權範數最小變異數投資組合,並以台灣50作為實證資料,運用十個績效指標來衡量加權範數最小變異數投資組合、其他三種標竿投資組合與指數型基金台灣50之表現。

    結果發現本研究所選取之台灣市場資料在運用加權範數最小變異數投資組合下,確實可以打敗其他大部分投資組合以及台灣50基金,並且在以下兩論點與過往文獻之敘述一致:加入報酬限制條件無法改善績效、使用替代參數亦可提供相稱績效。
    The asset allocation problem has always been an important issue on which investors concern. It is easier and more efficient for investors to manage their assets through constructing their portfolios in different methods to find the most optimized weight of assets. This essay explores a special portfolio, Weighted-Norm Minimum Variance Portfolio (WNMVP), which can minimize the risks of investment, and use Taiwan stock market data to undertake empirical study.

    The research measured the performance of WNMVP, other three benchmark portfolios, and Taiwan Top 50 ETF (0050) by using ten indicators, bringing three findings. First, WNMVP performs better than most of other portfolios do. Second, adding estimated mean return vector into the WNMVP does not improve performances. Third, three alternative norm penalties provide comparable performance as parameters in WNMVP do. The second and third findings are consistence with previous literature.
    參考文獻: 1. 李振婷(2015)。最小變異數投資組合在台灣股市之運用。未出版之碩士論文,國立政治大學,國際經營與貿易學系,台北。
    2. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and Loris, I. (2009) Sparse and stable Markowitz portfolios, Proceedings of the National Academy of Sciences of the United States of America 106, 12267–12272.
    3. Chopra, Vijay K., and Ziemba, William T. (1993) The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice, The Journal of Portfolio Management, 19, 6–11.
    4. DeMiguel, V., Garlappi, L., and Uppal, R. (2009) Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Review of Financial Studies 22, 1915–1953.
    5. DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009) A generalized approach to portfolio optimization: improving performance by constraining portfolio norms, Management Science 55, 798–812.
    6. Fan, J., Zhang, J., and Yu, K. (2012) Vast portfolio selection with gross-exposure constraints, Journal of the American Statistical Association 107, 592–606.
    7. Friedman, J., Hastie, T., Ho¨ fling, H., and Tibshirani, R. (2007) Pathwise coordinate optimization, Annals of Applied Statistics 1, 302–332.
    8. Jagannathan, R. and Ma, T. (2003) Risk reduction in large portfolios: why imposing the wrong constraints helps, Journal of Finance 58, 1651–1684.
    9. Ledoit, O. and Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance 10, 603–621.
    10. Markowitz, H. (1952) Portfolio Selection, The Journal of Finance, 7, 77–91.
    11. Merton, R. C. (1980) On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8, 323–361.
    12. Tibshirani, R. (1996) Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 58, 267–288.
    13. Yen, Y. –M. and Yen, T. J. (2014) Solving norm constrained portfolio optimization via coordinate-wise descent algorithms, Computational Statistics and Data Analysis 76, 737–759.
    14. Yen, Y. –M. (2015) Sparse Weighted-Norm Minimum Variance Portfolios, Review of Finance, 20, 1259–1287.
    15. Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301–320.
    描述: 碩士
    國立政治大學
    國際經營與貿易學系
    104351029
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104351029
    資料類型: thesis
    顯示於類別:[國際經營與貿易學系 ] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    102901.pdf1137KbAdobe PDF286檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋