English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51165708      Online Users : 987
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115753


    Title: 定翼型UAV影像立體測圖精度探討
    Accuracy investigation of stereo mapping by using the fixed-wing UAV images
    Authors: 顏怡和
    Yen, Yi-Ho
    Contributors: 邱式鴻
    顏怡和
    Yen, Yi-Ho
    Keywords: 定翼型無人飛行載具
    非量測型數位相機
    自率光束法空三平差
    立體測圖
    基高比
    地面取像距離
    Fixed wing UAV
    Non-metric digital camera
    Self-calibration bundle aerotriangulation
    Stereo mapping
    Base-Heigh Ratio
    Ground sample distance
    Date: 2013
    Issue Date: 2018-02-02 11:31:00 (UTC+8)
    Abstract: 基本地形圖測繪為國土基本資料建置項目之一,提供國土保育、規劃、防救災、民生經濟建設等高度共通性圖資。測製方式多以大型航空攝影飛機搭載量測型相機為航空攝影測量取像來源,並依據比例尺、精度、區域及需求作適當配置。而以定翼型無人飛行載具UAV(Unmanned Aerial Vehicle)航拍影像作為基本地形圖局部修測,為目前內政部國圖測繪中心發展的重點工作之一,但因定翼型UAV因酬載能力有限,搭載取像設備以非量測型相機為主,而非量測型數位相機光學鏡頭設計上因機械、光學及電子結構不若量測型數位相機設計嚴謹,應用於高精度測量工作前都必須經過相當的率定程序,本研究採取近景攝影測量程序,並以不同率定距離率定相機參數,均無法精確描述拍攝時相機參數。故進行空中三角平差皆須透過自率光束法空中三角測量平差方能改善因相機參數率定結果不精確所造成精度不佳之影響。
    自率光束法固然可以有效克服相機參數不精確現象,但其參數間相關性並無法有效控制,故運用航遙測感測器校正場具備高精度三維坐標之率定標為航攝取像後空三平差所需之控制點,並搭配自率光束法解算相機參數,提供後續航攝任務使用,並探討其沿用性。經過實驗證明實地率定相機參數以一般光束法空三平差即可達到相當精度。有效克服相機參數後,接續探討以點特徵的航攝影像控制資訊為光束法空三平差所需控制點,並以實測GPS-RTK檢核其精度,其平差成果符合基本地形圖精度要求。經過上述程序有效解算航攝影像外方位後,進行立體測繪基本地形圖,藉由實地檢核點檢視地形圖精度。
    然影響航空攝影測量立體測圖精度因素眾多,大多由像對基高比(Base-Height Ratio)及航攝影像之地面取像距離GSD(Ground Sample Distance)決定。藉由提高立體像對基高比提升空間前方交會精度,更細緻的地面取像距離等具彈性調整航攝條件,使得UAV酬載非量測形相機進行航攝任務,從稍早年的勘救災等緊急航攝任務之影像不具後續製圖運用,起至今日透過穩定的UAV航攝載具、更細緻的地面解析度及重疊率更高的航攝影像,並配合適當的非量測型相機率定條件,再經由合宜空三解算程序,UAV航攝取像系統配置已能達到相當程度的測量製圖能力。
    Basic topographic mapping of land to build one of the basic data, providing land conservation, planning, disaster prevention and relief, livelihood and economic construction and other highly commonality map data. Measurement system means more large-scale aerial photography to measure the type of aircraft equipped with cameras to take aerial photography as the source, and according to scale, precision, regional and demand for proper configuration. And at fixed wing UAV UAV (Unmanned Aerial Vehicle) as the basic topographic maps including aerial imagery partial revision and, as the current Minister of the Interior National Mapping Center map one focus of development work, but because of fixed wing UAV payload capacity limited, equipped with a non-image-taking device measuring cameras based, rather than measuring the optical lens type digital camera design due to mechanical, optical and electronic structure of the measurement is not as rigorous design of compact digital cameras, used in high-precision measurement before work must undergo considerable calibration procedures, the study adopted photogrammetry process, and at different rates fixed distance camera calibration parameters are not accurately describe the parameters of the camera when shooting. Therefore, aerial triangulation adjustment are required by law since the rate of beam aerial triangulation adjustment order to improve the results of camera parameter calibration inaccuracies caused by the impact of poor accuracy.
    Since the rate of beam method although imprecise camera parameters can be effectively overcome the phenomenon, but the correlation between the parameters and can not be effectively controlled, and therefore the use of aircraft telemetry sensor calibration field with high precision three-dimensional coordinates of the calibration standard for the aircraft after the intake air, like adjustment required control points, and with self-rate bundle solver camera parameters, provide follow-up mission to use aerial and explore its follow nature. The experiments show that on-site calibration camera parameters in the usual empty three-beam method can achieve considerable precision adjustment. Effectively overcome the camera parameters, continue to point to explore the characteristics of the aerial image control information for the bundle adjustment required to empty three control points, and the measured GPS-RTK checklist its precision, its results meet the basic topographic maps adjustment accuracy requirements . After these procedures were effective solver aerial image exterior orientation, the three-dimensional mapping of basic topographic maps, field check points by viewing topographical accuracy.
    However affect aerophotogrammetry many factors stereo mapping accuracy, mostly by the high ratio as the base (Base-Height Ratio) and aerial image of the ground to capture images from the GSD (Ground Sample Distance) decision. By increasing the base stereo pair of high precision space intersection than enhance, more detailed image of the ground to take a flexible adjustment of distance and other aerial conditions, making the UAV payload non-measurement-shaped camera aerial missions, from the earlier years of the survey disaster relief and other emergency tasks aerial mapping of the image does not have the use of follow-up, until today, through more detailed ground resolution, higher aerial image overlap and with non-metric cameras calibration conditions, and then through the expedient empty three solvers program, this UAV Air intake like configuration has been able to achieve a considerable degree of measurement graphing capabilities.
    Reference: 內政部國土測繪中心,2008,「探測感應器測繪平台架構規劃暨應用業工作總報告書」。
    內政部國土測繪中心,2010,「測繪科技發展後續計畫-發展無人飛行載具航拍技術作業執行計畫100年~103年」。
    國土測繪中心,2012,「101年度發展無人飛行載具航拍技術作業工作總報告書」。
    何維信,1988,「數位攝影機之率定問題」,行政院國家科學委員會專題研究計畫成果報告。
    李德仁、袁修孝,2002,「誤差處理與可靠性理論』,武漢大學出版社:武漢。
    范成楝,2001,「遙控飛機空載視訊影像自動化鑲嵌方法之研究」,國立中央大學土木工程研究所碩士論文:中壢。
    趙弘文,2009,「無人旋翼機自動駕駛系統之研發」,國立成功大學航空太空工程研究所碩士論文:台南。
    謝幸宜,2011,「以自率光束法提升四旋翼UAV航拍影像之定位精度」,國立政治大學地政學系碩士論文:台北。
    何維信,1995,『航空攝影測量學』,國立編譯館主編,大中國圖書公司:台北。
    鄒芳諭,2010,「以非量測性相機進行近景攝影測量探討」,國立交通大學土木工程研究所碩士論文:新竹。
    Abidin, H.Z. 1993, Computational and Geometrical Aspects of On-The-Flt Ambiguity Resolution, PhD Dissertation, Dept. of Surveying Engineering Tech. Rept. No. 164, University of New Brunswick, Fredericton, New Brunswick, Canada, pp 314.
    Ackermann, F.E. 1992, Operational Rules and Accuracy Models for GPS Aerial Triangulation, International Archives of Photogrammetry and Remote Sensing,Washington D.C., pp. 691-700.
    Beard, R., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., & Goodrich, M. (2005). Autonomous vehicle technologies for small fixed wing UAVs. AIAA Journal of Aerospace Computing, Information, and Communication, 2(1), 92-108.
    Bendea, H. F., Chiabrando, F., Tonolo, F. G. and Marenchino, D., 2007. Mapping of archaeological areas using a low-cost UAV the Augusta Bagiennorum Test site, In: XXI International Symposium, Athens, Greece.
    Bendea, H., Boccardo, P., Dequal, S., Tonolo, F. G., Marenchino, D., Piras, M., 2008, Low Cost UAV for Post-Disaster Assessment, Proceedings of The XXI Congress of the International Society for Photogrammetry and Remote Sensing, Beijing (China), 3-11 July 2008.
    Berni J.A.J., Zarco-Tejada P., Suárez L., Fereres E., 2009, Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle, IEEE Transactions on Geoscience and Remote Sensing, 47 , pp. 722–738.
    Brown, D.C. (1976), The Bundle Adjustment: Progress and Prospects, XIIIth International Archive of Photogrammetry, Helsinki, Finland.
    Cardenal, J., J. Delgado, E. Mata, A. Gonzalez and I. Olague (2006). Use of historical flight for landside monitoring. 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Science, Lisbon, Portugal, Instituto Geogrfico Portugues.
    Chiang, K. W., Tsai, M. L., & Chu, C. H. (2012). The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications. Sensors, 12(7), 9161-9180.
    Ebadi, H., 2006, Advanced Analytical Aerial Triangulation, K.N.TOOSI University of Technology.
    Edward M. Mikhail, James S. Bethel, and J. Chris McGlone, Introduction to Modern Photogrammetry, John Wiley & Sons, Inc., New York. 2001. ISBN 0-471-30924-09.
    Eisenbeiss, H., 2004. A mini Unmanned Aerial Vehicle (UAV): System overview and image acquisition. International Workshop on Processing and Visualization using High Resolution Imagery, In: Proceeding of the International Archives of Photogrammetry and Remote Sensing, XXXVI(5/W1), November18-20, 2004, Pitsanulok, Thailand.
    Eisenbeiss, H., Lambers, K., Sauerbier, M. and Zhang, L., 2005. Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter, In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, CIPA, Torino, Italy, Vol XXXIV-5/C34, 238-243.
    Eisenbeiss, H., Zhang, L., 2006, Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-5, pp. 90–96
    Eisenbeiss, H., 2006, Advanced Analytical Aerial Triangulation, Unpublished doctoral dissertation, Dipl.-Ing., University of Technology Dresden, Dresden.
    Eisenbeiss, H., 2008. A model helicopter over Pinchango Alto - comparison of terrestrial Laser scanning and aerial Photogrammetry. In: New Technologies for Archaeology: Multidisciplinary Investigations in Palpa and Nasca, Peru, Markus Reindel and Günther Wagner (ed.), Reihe: Natural Science in Archaeology (Ed. Bernd Herrmann, Günther Wagner), Springer-Verlag, Berlin, Heidelberg, New York, pp. 339-358.
    Eisenbeiss, H., 2009, UAV Photogrammetry. DISS. ETH NO. 18515, doi:10.3929/ethz-a-005939264.and Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr.105, p. 235.
    Eisenbeiss, H., 2011, DIRECT GEOREFERENCING OF UAVS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22 UAV-g 2011, Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland.
    Enber, H., 1976, Self Calibrating Block Adjustment, Invited Paper of Commission III,ISP Congress, Helsinki, Finland.
    Gruen, A., 1978, Experience with Self Calibrating Bundle Adjustment, ASP annual meeting, Washington D.C.
    Erdas Inc.,2008, "LPS Project Manager Use`s Guide", Norcross, Georgia. Erdas Inc.
    Faig, W. (1976), Independent Model Triangulation with Auxiliary Vertical Control,Commission III, ISPRS Congress, Helsinki, Finland.
    Fraser, C. S., 1997, “Digital camera self-calibration”, ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 52, pp. 149-159.
    Friess, Peter, 1990, Kinematic GPS Positioning for Aerial Photogrammetry Empirical Results. Proceedings of the Second International Symposium on Precise Positioning with the Global Positioning System, 3.- 7. Sept.1990, Ottawa, p.1169-1184.
    Gülch, E. 2012, PHOTOGRAMMETRIC MEASUREMENTS IN FIXED WING UAV IMAGERY, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B1, p.381-386.
    Grammatikopoulos L., Kalisperakis I., Karras G., Petsa E.,2007. Automatic multi-view texture mapping of 3D surface projections.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVI/W47.
    Gruen, Runge, 1988. The accuracy potential of self-calibrating aerial triangulation without control. Presented Paper to the 16th Congress of the ISPRS Commission III, Kyoto/Japan,1-10 July 1988. Int. Arch. of Photogrammetry and Remote Sensing, Vol. 27-B3, pp. 245-253.
    Haarbrink, R. B. and Eisenbeiss, H., 2008. Accurate DSM production from unmanned helicopter systems, In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Beijing, China, XXXVII. Part B1, 1259-1264.
    Hatch, R.R., 1990, Instantaneous Ambiguity Resolution. Presented at the KIS Symposium. Banff ,Canada.
    Hinsken, L. et. al. 2002. Triangulation of the LH Systems’ ADS40 using ORIMA GPS/IMU. ISPRS Com. III Proceedings, Graz, Austria.
    Hongxia, C., Zongjian, L. and Guozhong, S., 2007. Non-metric CCD Camera Calibration for Low Attitude Photogrammetric Mapping, in IEEE, Electronic Measurement and Instruments, 2007. ICEMI `07. 8th International Conference on, 2: 689-696.
    Horcher, A. and Visser, R. J. M., 2004. Unmanned Aerial Vehicles: Applications for Natural Resource Management and Monitoring, In: Council on Forest Engineering Annual Meeting, Hot Springs (AR), USA.
    Hruska K, Bartos M, Kralik P, Pavlik I (2005): Mycobacterium avium subsp. paratuberculosis in powdered infant milk: paratuberculosis in cattle – the public health problem to be solved. Veterinarni Medicina 50, 327–335.
    http://www.vri.cz/docs/vetmed/50-8-327.pdf
    Hunt, E. R., Cavigelli, M., Daugherty, C. S. T., McMurtrey, J., and C. L. Walthall, 2005, “Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status,” Precision Agriculture, 6:359–378.
    Kise, M., Rovira-Más, F. and Zhang, Q., 2005. A stereovision-based crop row detection method for tractor-automated guidance, In: Biosystems Eng, 90, 357-367.
    Kinlyside, D.,1988, Some Aspects on GPS for Airbone Photogrammetric Control. Aust.J.Geod.Photogram.Surv, No.49, pp.55-72.
    Kupfer, G., 1986, Geometrical System Calibration of Metric Cameras. In: Progress in Imaging Sensors, Proc. ISPRS Symposium, Stuttgart, 1-5 Sept 1986 (ESA SP-252,Nov 1986), pp.55-62.
    O. Küng, C. Strecha, P. Fua, D. Gurdan, M. Achtelik, K.-M. Doth, and J. Stumpf, 2011.SIMPLIFIED BUILDING MODELS EXTRACTION FROM ULTRA-LIGHT UAV IMAGERY. International Society for Photogrammetry and Remote Sensing.Page(s) 217-222.
    Laliberte, A., S., Winters, C. and Rango, A., 2007. Acquisition, orthorectification, and classification of hyperspatial UAV imagery, In: Fourth Annual Symposium: Research Insights in Semiarid Scosystems, RISE, University of Arizona, Tucson.
    Lin, Z. J., 2008. UAV for mapping—low altitude photogrammetric survey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1): 1183–1186.
    Lin, Y., Hyyppä, J., & Jaakkola, A., 2011, Mini-UAV-Borne LIDAR for Fine-Scale Mapping. Geoscience and Remote Sensing Letters, IEEE, 8, 99, 426–430.
    Lucas, James R., 1987. Aerotriangulation Without Ground Control. Photogrammetric Engineering and Remote Sensing, Vol. 53, No. 3.
    Merino, L., Caballero, F., Martínez-de Dios, J. R., Ferruz, J., and Ollero, A., 2006, “A cooperative perception system for multiple UAVs: application to automatic detection of forest fires”, Journal of Field Robotics, 23, pp. 156-184, Washington: John Wiley & Sons, Inc.
    Moore, J. L. (2011). Powerline perching with a fixed-wing UAV (Doctoral dissertation, Massachusetts Institute of Technology).
    Patias, P., Saatsoglou-Paliadeli , C., Georgoula, O., Pateraki, M., Stamnas, A. and Kyriakou, N., 2007. Photogrammetric documentation and digital representation of the macedonian palace in Vergina-Aegeae, In: CIPA, XXI International CIPA Symposium, Athens, Greece.
    Pueschel, H., Sauerbier, M. and Eisenbeiss, H., 2008. A 3D model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images, In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Beijing, China, Vol. XXXVII. Part B8, 93-98.
    Raquet, J. and G. Lachapelle ,2000, Development and Testing of a Kinematic Carrier-Phase Ambiguity Resolution Method Using a Reference Receiver Network. Navigation, The Institute of Navigation, Alexandria, VA., 46, 4, 283-295.
    Reich, M.; Wiggenhagen, M.; Muhle, D. (2012): Filling the holes - Potential of UAV-based photogrammetric facade modelling. In: Tagungsband des 15.
    Remondino, F., and Fraser, C., 2006, Digital Camera Calibration Methods: Considerations and Comparisons, ISPRS Commission V Symposium `Image Engineering and Vision Metrology`, pp.266-272, 25-27 September, Dresden, Germany.
    Roberts, J. W., Cory, R., & Tedrake, R. (2009, June). On the controllability of fixed-wing perching. In American Control Conference, 2009. ACC`09. (pp. 2018-2023). IEEE.
    Schut, G. H., 1979, “Selection of Additional Parameters for the Bundle Adjustment”, Photogrammetric Engineering and Remote Sensing, vol. 45, issue. 9, pp.1243-1252, Maryland.
    Steffen, R., and Förstner, W., 2008, “On Visual Real Time Mapping for Unmanned Aerial Vehicles”, Paper presented at the 21st, Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Beijing, China, S. 57-62 Part B3a.
    Tahar, K.N., Ahmad, A., Wan Mohd Akib, W.A.A. and Udin, W.S., "Unmanned aerial vehicle technology for large scale mapping," ISG & ISPRS, SACC, Shah Alam, Malaysia, Sept. 2011.
    U. Vollath, A. Deking, H. Landau, C. Pagels, B. Wagner, “Multi-Base RTK
    Wanninger L. ,2002, Die Bedeutung der Ionosphäre für Referenzstationsnetze. 4. SAPOS-Symposium, Hannover.+
    Wolf, P. R. and Dewitt B. A., 2000, Elements of Photogrammetry: with Applications in GIS, 3rd edition, Taipei: The McGraw-Hill.
    Zarco-Tejada P.J., González-Dugo V., Berni Fluorescence J.A.J., temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera Remote Sensing of Environment, 117 (1) (2012), pp. 322–337.
    Zhou, G., Li, C. and Cheng, P., 2005. Unmanned aerial vehicle (UAV) real-time video registration for forest fire monitoring, In: IEEE International, Geoscience and Remote Sensing Symposium, 1803-1806.
    Zhou, G. and Wu, J., 2006. Unmanned aerial vehicle (UAV) data flow processing for natural disaster response. ASPRS 2006 Annual Conference, Reno, Nevada.
    Description: 碩士
    國立政治大學
    地政學系
    98923006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0989230061
    Data Type: thesis
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    006101.pdf5219KbAdobe PDF2973View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback