政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/115462
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51106046      Online Users : 905
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115462


    Title: 基於三元編碼之三維特徵描述子建構與模型比對
    Local Ternary Descriptor for 3D Model Matching and Retrieval
    Authors: 王崇銘
    Wang, Chong Ming
    Contributors: 廖文宏
    Liao, Wen Hung
    王崇銘
    Wang, Chong Ming
    Keywords: 積木風格模型
    三元化區域特徵描述子
    三維模型比對
    Block-style model
    Local ternary descriptor
    Model comparison
    Date: 2017
    Issue Date: 2018-01-03 16:20:19 (UTC+8)
    Abstract: Qmodel Creator是一款製作三維模型的軟體,其模型特色為積木風格,顧名思義,是以積木或是立方體所構成的模型。然而,目前三維模型檢索系統多數以關鍵字搜尋,缺點為需要大量時間對三維模型進行關鍵字標記。
    本論文提出三維特徵描述方法(3D Local Ternary Descriptor,3DLTD),嘗試基於內容本身進行三維模型檢索。此方法由二維影像的三元特徵描述延伸而來。首先,利用PCA找出主軸分佈,藉此篩選非相關的模型。接著,依照每個模型的bounding box分割兩次區塊,第一次分割的單位稱為cube,第二次分割稱為voxel,再根據與邊界的距離賦予voxel對應的權重,距離邊界越近權重越大,同時隨機從voxel樣本對關係中取64組樣本對進行三元化編碼。最後把編碼完的字串經由bipartite weighted matching做匹配。相較於3DBRIEF方法,本架構可以改善效率的問題,使用三元化編碼機制加快其運算速度,並以voxel為單位加入權重機制,以區別加權voxel位置之間造成的影響程度。
    實驗結果顯示本研究方法對於積木風格模型的樣本集,相對於二元化編碼,採用三元化編碼不僅可以提升描述力和抗噪力,同時因為區域的劃分,降低特徵描述子維度,節省模型比對的時間和空間,也能維持整體模型比對之效能。
    Qmodel Creator is a software for designing block (lego) style 3D models using intuitive drawing methods. The produced models are composed of cubes, which are conveniently encoded using voxel-based representation. In order to provide the search function for 3D models, keywords or tags have to be inserted manually, which is time-consuming and not cost-effective.
    In this thesis, we proposed a 3D feature descriptor defined as 3D local ternary descriptor (3DLTD) to support content-based search and retrieval for models generated using Qmodel Creator. This descriptor is extended from a class of 2D features known as local binary descriptors (LBD) for image matching. To begin with, principal component analysis (PCA) is employed to align model orientation to filter out irrelevant samples. After the alignment, we first partition the bounding box of each model into cubes and then divide cubes into voxels. Weights are assigned to each voxel according to its distance to the boundary. We randomly select 64 pairs of voxels in each cube and generate a ternary code based on the relationship between each pair of voxels. Finally, weighted bipartite matching is employed to compute the similarity between two models. Compared with 3DBRIEF, another method extended from LBD, our proposed framework is more robust and efficient. The inclusion of weights differentiates the contribution of different voxels and have effectively enhanced the performance of 3DLTD.
    Experimental results indicate that 3DLTD is suitable for comparing and searching voxel-based 3D models. Thanks to two-level partition, feature representation and distance computation are greatly simplified. Ternary encoding also promotes `describility` and noise immunity while maintaining efficiency in 3D model search and retrieval.
    Reference: [1] HU, Chen-Chi, et al. Intuitive 3D cubic style modeling system. In: SIGGRAPH Asia 2015 Posters. ACM, 2015. p. 27.
    [2] LOWE, David G. Object recognition from local scale-invariant features. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on. IEEE, 1999. p. 1150-1157.
    [3] BAY, Herbert; TUYTELAARS, Tinne; VAN GOOL, Luc. SURF: Speeded up robust features. In: Computer Vision–ECCV 2006. Springer Berlin Heidelberg, 2006. p. 404-417.
    [4] TOLA, Engin; LEPETIT, Vincent; FUA, Pascal. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE transactions on pattern analysis and machine intelligence, 2010, 32.5: 815-830.
    [5] CALONDER, Michael, et al. BRIEF: Binary robust independent elementary features. In: Computer Vision–ECCV 2010. Springer Berlin Heidelberg, 2010. p. 778-792.
    [6] LEUTENEGGER, Stefan; CHLI, Margarita; SIEGWART, Roland Yves. BRISK: Binary robust invariant scalable keypoints. In: Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. p.2548-2555.
    [7] RUBLEE, Ethan, et al. ORB: an efficient alternative to SIFT or SURF. In:Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. p. 2564-2571.
    [8] OJALA, Timo; PIETIKAINEN, Matti; MAENPAA, Topi. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 2002, 24.7: 971-987..
    [9] TANGELDER, Johan WH; VELTKAMP, Remco C. A survey of content based 3D shape retrieval methods. Multimedia tools and applications, 2008, 39.3: 441-471.
    [10] ALAHI, Alexandre; ORTIZ, Raphael; VANDERGHEYNST, Pierre. Freak: Fast retina keypoint. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on. Ieee, 2012. p. 510-517.
    [11] WANG, Zhenhua; FAN, Bin; WU, Fuchao. Local intensity order pattern for feature description. In: Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. p. 603-610.
    [12] TVERSKY, Amos. Features of similarity. Psychological review, 1977, 84.4: 327.
    [13] SUNDAR, Hari, et al. Skeleton based shape matching and retrieval. In: Shape Modeling International, 2003. IEEE, 2003. p. 130-139.
    [14] VRANIC, Dejan V.; SAUPE, Dietmar. 3D model retrieval. 2004. PhD Thesis. University of Leipzig.
    [15] PAQUET, Eric, et al. Description of shape information for 2-D and 3-D objects. Signal processing: Image communication, 2000, 16.1: 103-122.
    [16] VRANIC, Dejan V.; SAUPE, Dietmar; RICHTER, Jörg. Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In: Multimedia Signal Processing, 2001 IEEE Fourth Workshop on. IEEE, 2001. p. 293-298.
    [17] HORN, Berthold Klaus Paul. Extended gaussian images. Proceedings of the IEEE, 1984, 72.12: 1671-1686.
    [18] KAZHDAN, Michael; FUNKHOUSER, Thomas; RUSINKIEWICZ, Szymon. Rotation invariant spherical harmonic representation of 3 d shape descriptors. In: Symposium on geometry processing. 2003. p. 156-164.
    [19] SHEN, Yu-Te, et al. 3D model search engine based on lightfield descriptors. In: Proc. eurographics. 2003.
    [20] MATSUDA, Takahiro; FURUYA, Takahiko; OHBUCHI, Ryutarou. Lightweight binary voxel shape features for 3D data matching and retrieval. In: Multimedia Big Data (BigMM), 2015 IEEE International Conference on. IEEE, 2015. p. 100-107.
    [21] VRANIĆ, Dejan V. An improvement of rotation invariant 3D-shape based on functions on concentric spheres. In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on. IEEE, 2003. p. III-757-60 vol. 2.
    [22] ZHANG, Lisha, et al. Survey on 3D shape descriptors. FundaÃgao para a Cincia ea Tecnologia, Lisboa, Portugal, Tech. Rep. Technical Report, DecorAR (FCT POSC/EIA/59938/2004), 2007, 3.
    [23] CHEN, Ding‐Yun, et al. On visual similarity based 3D model retrieval. In: Computer graphics forum. Blackwell Publishing, Inc, 2003. p. 223-232.
    [24] LIAO, Wen-Hung. Region description using extended local ternary patterns. In: Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010. p. 1003-1006.
    [25] TAN, Xiaoyang; TRIGGS, Bill. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE transactions on image processing, 2010, 19.6: 1635-1650.
    Description: 碩士
    國立政治大學
    資訊科學學系
    103753015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103753015
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File SizeFormat
    301501.pdf2852KbAdobe PDF2371View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback