English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52212807      Online Users : 872
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115423


    Title: 素樸理論對產品資訊中遺漏訊息推論的影響效果
    Authors: 別蓮蒂
    Contributors: 企業管理學系
    Keywords: 推論;主觀知識;素樸理論
    Inference;Subjective Knowledge;Naïve Theory
    Date: 2015
    Issue Date: 2017-12-26 17:43:37 (UTC+8)
    Abstract: 面對資訊不全的消費情境,消費者常依簡單的推論對遺漏資訊做出判斷,而過去的消費者推論研究大多將重點放在推論結果,卻少有探討影響消費者採用推論基礎的因素,本文即深入剖析消費者主觀產品知識對其採用推論基礎的影響,及消費者心中素樸理論如何修正此推論結果。本研究共進行兩個2 (主觀產品知識:高/低) * 2 (產品屬性在品類為差異:大/小) 實驗,及一個2 (主觀產品知識:高/低) * 2 (產品屬性在該品類為差異:大/小) * 2 (素樸理論操弄:有素樸理論/無素樸理論) 的受試者間設計實驗。結果顯示:(1)高主觀知識消費者相較於低主觀知識者會使用更多元的推論基礎推論遺漏屬性;(2) 當產品屬性在品類中差異小時,消費者偏好利用品類性基礎推論遺漏屬性,而當產品屬性在品類中差異大時,消費者偏好利用關係性基礎推論遺漏屬性;(3) 高主觀知識的消費者心中的一分錢一分貨素樸理論較容易被誘發,進而修正其對最適配戴天數的估計,反之,低主觀知識的消費者的素樸理論並不影響其對最適配戴天數的推論。
    There are many missing information of product in the consumer market, and consumers always rely on inference to make a judgment on missing information. This study investigated the effect of consumers’ subjective knowledge on their inference bases and the correction effects of their naive theory on the inference results. Most previous inference research focused on the results of inference, but little research discussed the factors of people’s inference bases. The focus of the current study was how consumers’ subjective knowledge influenced the inference base that they used to make an inference. This study included three experiments. The first two experiments were 2 (Subjective Knowledge: high versus low) * 2 (attribute variation in the product category: big versus small), and the third experiment was 2 (Subjective Knowledge: high versus low) * 2 (attribute variation in the product category: big versus small) * 2 (Naive theory: yes versus no) between subject design. The results indicated that consumers with high levels of subjective knowledge used more and various inference bases than consumers with low levels of subjective knowledge. Furthermore, when the attribute variation in the product category was small, consumers tended to use category-based inference. On the other hand, when the attribute variation in the product category was big, consumers tended to use correlation-based inference. Finally, consumers with high subjective knowledge would use correlation-based inference to make the inference about the missing information, and then employ naive theory to correct the inference results, but not consumers with low subjective knowledge.
    Relation: 執行起迄:2015/08/01~2017/11/15
    104-2410-H-004-127-MY2
    Data Type: report
    Appears in Collections:[資訊科學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    104-2410-H-004-127-MY2.pdf1195KbAdobe PDF2265View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback