English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113303/144284 (79%)
造訪人次 : 50794468      線上人數 : 706
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/115403


    題名: An Efficient Segmentation Method for Remote Sensing Images Using Self-Organization Map
    作者: 吳俊霖
    范姜士均
    Wu, Jiunn-Lin
    Shih-Chun, Fan-Chiang
    關鍵詞: 影像分割;自組織映射圖;類神經網路
    Image segmentation;Remote sensing;Forest;SOM;DCT
    日期: 2006
    上傳時間: 2017-12-26 17:25:00 (UTC+8)
    摘要: 本論文提出一個基於類神經網路的彩色遙測之影像分割法。我們提出使用自組織映射圖(Kohonen self-organizing map)來萃取影像中主要的特徵,接著利用所得的特徵進行無監督式影像的分類(unsupervised image segmentation)。 在傳統的自組織映射圖,輸入層通常採用像素(pixel)本身的數值,並未考慮到影像周遭的像素,所以在森身遙測影像分割上並不能得到滿意的結果。事實上在自然影像中,像素本身與周遭像素都具有很大的相依性,於是在此論文中,我們提出一個修正的自組織映射圖演算法,我們在輸入層加入空間特徵( spatial features ), 包含平均值濾波器(mean-filter)、中值濾波器(medium-filter)與離散餘弦變換(discrete cosine transform)之係數等。此外我們並且給予每個神經元一個權重值,使其針對不同的輸入,產生對應的權重值,以達到針對不同類型的輸入,均可對應至正確的輸出位置。經過訓練過後的類神經網路,我們提出一有效的後處理的步驟來將具有相同類型的輸出神經元,結合成同一種輸出,並且利用簡單的濾波器來將孤立點移除。我們應用所提演算法來處理森林遙測影像的分割。在實驗中,我們把將不同的樹種視為不同的材質,針對材質的特型,給予不同的特徵,以達到分類的目的。實驗結果顯示所提的方法可以有效的對於彩色影像、遙測影像以及森林影像進行分類。
    In this paper, an efficient segmentation method based on neural network is proposed for the color remote sensing images of forest. It is facilitated by Kohonen self-organizing map (SOM) network, and it performs the unsupervised segmentation.The images of different of tree species usually have the similar color distribution, and the differences between them are textures. The traditional SOM usually obtains a poor result in the segmentation of forest images, since it uses only the intensities of R, G, and B channels, it does not consider the relationship existed in the neighborhoods of pixels. However, in practice, the pixels in natural images usually have strong correlation with their neighborhoods. Therefore, we propose a modified self-organizing map network in this paper, it uses the additional spatial features in the input layer, such as the coefficients of discrete cosine transform. In this way, we consider both pixels themselves and the correlation information with their neighborhoods at the same time. We also add a new weighting function for each neuron, which can help each neuron to map to a suitable output neuron. Finally, we use the noise-filter to improve segmentation quality at the post-processing stage. Experimental results show that the proposed method can separate successfully the different color texture in the remote sensing images of forest.
    關聯: TANET 2006 台灣網際網路研討會論文集
    軟體創意開發與應用
    資料類型: conference
    顯示於類別:[TANET 台灣網際網路研討會] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    707.pdf397KbAdobe PDF2577檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋