English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50953997      Online Users : 930
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/115088


    Title: 耦合系統的全局動態行為之研究及其在生物模型上的應用
    Authors: 曾睿彬
    Contributors: 應用數學學系
    Keywords: 耦合系統;耦合矩陣;同步化;多重穩定性;收斂性;平衡點
    Coupled systems;Connection matrix;Synchronization;miltistability;convergence;equilibrium point
    Date: 2013
    Issue Date: 2017-12-08 15:01:28 (UTC+8)
    Abstract: 在這近幾十年來,耦合系統的同步化行為與多重穩定性已經成為相當重要的研究課題。在現有文獻中,用來處理線性耦合系統同步化問題的方法往往依賴於特定的耦合形式;也因此它們的應用往往受到了限制。現有處理同步問題的方法大多要求耦合矩陣是與時間無關的、或對稱的,或者要求耦合矩陣之行的總和須為零、或其非對角線元素必須為非負、或其所有非零特徵值需具有負實部、或滿足節點的平衡等等。在這個研究中,我們發展出一套可以處理具更一般耦合矩陣形式之耦合系統的同步化方法。另外在這個研究中,我們也發展一個可處理具多重穩定平衡點之神經網路的全局收斂性的方法;此方法可適用於具平滑的S形(sigmoidal)耦合函數或分段線性耦合函數。經由此方法,我們可推導了具各種不同平衡點個數的條件,並研究系統的收斂性。
    Synchronization and multistability of coupled systems have been important research topics in recent decades. In the literature, much of the existing methods for the synchronization of coupled systems strong rely on specific forms of the coupling structure; their applications are consequently limited. Most of the existing approaches to the synchronization problems require the connectivity matrix to be time-independent, symmetric, with zero row-sums, with nonnegative off-diagonal entries, with all nonzero eigenvalues having negative real part, or with node balance, etc. In this project, we develope an approach to the synchronization of a network of coupled oscillators under which the connection matrix could be quite general. Moreover, we also develope a new approach to conclude the global convergence to multiple equilibrium points of the neural networks. This approach accommodates both smooth sigmoidal and piecewise linear activation functions. Based on this approach, we derive several criteria which lead to disparate numbers of equilibria, and investigate the convergence of the systems
    Relation: 執行起迄:2013/08/01~2014/10/30
    102-2115-M-004-004
    Data Type: report
    Appears in Collections:[應用數學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    102-2115-M-004-004.pdf5260KbAdobe PDF2289View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback