English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51593622      Online Users : 824
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/114488


    Title: 總統選舉預測探討-以情感溫度計預測未表態選民的應用
    President Elections Forecast-Using Feeling Thermometer to Predict Undecided Voters
    Authors: 盛治仁
    Sheng, Emile C. J.
    Keywords: 總統選舉;選舉預測;情感溫度計;區辨分析;人口變項;議題立場;政治態度;政治版圖
    presidential election;election forecast;feeling thermometer;discriminant analysis;demographic variables;issue position;attitudinal variables;political landscape
    Date: 2000-11
    Issue Date: 2017-11-08 11:33:18 (UTC+8)
    Abstract: 未表態選民是選舉預測過程中非常重要的一環。本文嘗試先從人口變項、議題立場及政治態度等面向對已表態選民作區辨分析。結果發現,單從這些面向對已表態者的區辨能力來看,政治態度的區辨能力最高,議題立場次之,而人口變項最差。而即使把三個面向的變項共同建構一個模型,其區辨能力也並不令人滿意。如果將其用來預測未表態者,其正確度也令人懷疑。作者並嘗試以情感溫度計來區隔表態選民並預測未表態選民,經過與實際得票率比對後,發現情感温度計的區辨能力比上述的模型都要好,而其预測結果也最接近實際投票結果。另外作者也發現從各候選人的支持群眾分布來看,陳水扁和連戰的支持者平均距離是最遠的,宋楚瑜和陳水扁支持者的距離次之,而連戰和宋楚瑜的支持者的距離最接近。
    In election forecast, the ability to predict the intentions of undecided voters plays an important role in determining its accuracy. This article uses discriminant analysis with demographic variables, issue positions, and attitudinal variables, respectively, to classify voters who stated their voting preferences. We found that comparatively speaking, attitudinal variables can correctly classify voters with the highest percentage, followed by issue positions and demographic variables. However, none of the above models displayed satisfying results, not even the combined model including all three types of variables. Therefore, there are reasonable doubts employing these variables to construct models predicting the vote intention of undecided voters. The author then attempts to use feeling thermometer scores to classify voters who expressed their vote intention sand to predict the inclinations of undecided voters. After contrasting the results with the actual election outcome, we found that feeling thermometer scores have better discriminant power than previous models. The author also found that among the supporters of the three major candidates, ideologically speaking, Chen Shui-Bian`s and Lian Chan`s supporters are furthest away from each other on their average positions, while James Soong`s supporters` average ideological position is closest to that of Lien Chan`s supporters.
    Relation: 選舉研究 , 7(2) , 75-108
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6612%2ftjes.2000.07.02.75-107
    DOI: 10.6612/tjes.2000.07.02.75-107
    Appears in Collections:[選舉研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    7(2)(075-108).pdf1533KbAdobe PDF2422View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback