Reference: | 英文文獻 1. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H. T. (2012). Learning from data. New York, NY, USA:: AMLBook. 2. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. 3. Altman, E and Saunders, A.(1998)Credit Scoring risk measurement: Development over last 20 years, Journal of Banking and Finance 4. Arnott, Richard and Joseph E. Stiglitz (1991) ”Moral Hazard and Nonmarket Institutions:Dysfunctional Crowding Out or Peer Monitoring?” The American Economic Review March 1991, 179-190. 5. Bachmann et al(2011)," Online Peer-to-Peer Lending – A Literature Review ", Journal of Internet Banking and Commerce, August 2011, vol. 16, no.2 6. Berger, Allen N. and Gregory F. Udell (1992): ”Some Evidence on the Empirical Significance of Credit Rationing” The Journal of Political Economy 100(5): 1047-1077. 7. Besley, Timothy and Stephen Coate (1995) ”Group Lending, Repayment Incentives and Social Collateral” Journal of Development Economics Vol. 46, 1-18. 8. Berkovich E.,(2011) Search and herding effects in peer-to-peer lending: evidence from prosper.com, Annals Finance 9. Bekkerman R., et al(2003), "Distributional word clusters vs words for text categorization" JMLR: 3 1183-1208 10. Bishop ,C.(1995). Neural Networks for Pattern Recognition. Oxford University Press, London 11. Black, K. (2009). Business statistics: Contemporary decision making. John Wiley & Sons. 12. Collier B., Hamphire R., (2010)Sending Mixed Signals: Multilevel Reputation Effect s in Peer to Peer Lending Markets, Research Gate 13. Cox, Donald , Tullio Japelli (1990) ”Credit Rationing and Private Transfers: Evidence from Survey Data” The Review of Economics and Statistics 72(3): 445-454. 14. Dapp, T., Slomka, L., AG, D. B., & Hoffmann, R. (2014). Fintech—The digital (r) evolution in the financial sector. Deutsche Bank Research”, Frankfurt am Main. 15. Freedman S., Jin G,(2008), "Do Social Networks solve Information Problems for Peer-to-Peer Lending? Evidence from Prosper.com" 16. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 17. Guyon I., Elisseeff (2003)," An Introduction to Variables and Feature Selection", Journal of Machine Learning Research 3(2003) 1157 -1182 18. Hampshire, Robert (2008) ”Group Reputation Effects in Peer-to-Peer Lending Markets: An Empirical Analysis from a Principle-Agent Perspective” mimeo. 19. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. 20. Haykin, S. S(2009). Neural networks and learning machines (Vol. 3). Upper Saddle River, NJ, USA:: Pearson. 21. Hoff, Karla , Joseph E. Stiglitz ”Introduction: Imperfect Information and Rural Credit Markets – Puzzles and Policy Perspectives” the World Bank Economic Review 4(3): 235- 250 22. Huang, C.L., Chen, M.C., Wang, C.J.,(2007) Credit scoring with a data mining approach based on support vector machines, Expert System with Applications 23. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: springer. 24. Kaastra, I. , M. Boyd (1996). "Designing a neural network for forecasting financial and economic time series." Neurocomputing 10(3): 215-236. 25. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. 26. LeCun,Y,Bottou L, Orr G., and Muller K.(1998). Efficient backprop. In G. Orr and K. Muller, editors,Neural Networks: Tricks of the Trade. Springer 27. Lee, K. C., Han, I., & Kwon, Y. (1996). Hybrid neural network models for bankruptcy predictions. Decision Support Systems, 18(1), 63-72. 28. Lee E. & Lee B.,(2012) Herding behavior in online P2P lending: An empirical investigation, Electronic Commerce Research and Applications 11 29. Lerman P.M.,(1980) Fitting Segmented Regression Models by Grid Search, Applied Statistics, Vol. 29, No. 1 (1980), pp. 77-84 30. Lin , Prabhala .,Viswanathan.(2012), "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending",Management Science, 59:1 31. Malekipirbazari ., Aksakalli, Risk assessment in social lending via random forests, Expert Systems 32. Manning, C., Raghavan P., Schütze H.,(2009), An Introduction to Information Retrieval 33. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133. 34. Mendelson, Haim (2006) ”Prosper.com: A People-to-People Lending Marketplace” mimeo. 35. Odom, M. D. , R. Sharda (1990). A neural network model for bankruptcy prediction. Neural Networks, 1990., 1990 IJCNN International Joint Conference on, IEEE. 36. Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. " O`Reilly Media, Inc.". 37. Ravina, Enrichetta ”Love & Loans: The Effect of Beauty and Personal Characteristics in Credit Markets”, Available at SSRN: http://ssrn.com/abstract=972801. 38. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. 39. Ruder , Sebastian(2016), "An overview of gradient descent optimization algorithms " 40. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1. 41. Specht, D. F. (1990). Probabilistic neural networks. Neural networks, 3(1), 109-118. 42. Srivastava,(2014), Dropout: A Simple Way to Prevent Neural Networks from Overfitting 43. Stiglitz, Joseph E. (1990) ”Peer Monitoring and Credit Markets” The World Bank Economic Review 4:3 351-366. 44. Stiglitz, Joseph E. , Andrew Weiss (1981): ”Credit Rationing in Markets with Imperfect Information” American Economic Review 71(3): 393-410. 45. Tam, K. Y. , M. Kiang (1990). "Predicting bank failures: A neural network approach." Applied Artificial Intelligence an International Journal 4(4): 265-282. 46. Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1). New York: Wiley. 47. Venkatasubramanian, V., & Chan, K. (1989). A neural network methodology for process fault diagnosis. AIChE Journal, 35(12), 1993-2002. 48. Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits (No. TR-1553-1). STANFORD UNIV CA STANFORD ELECTRONICS LABS. 49. Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415-1442. 50. Yoon, Y., G. Swales (1991). Predicting stock price performance: A neural network approach. System Sciences, 1991. Proceedings of the Twenty-Fourth Annual Hawaii International Conference on, IEEE. 51. Zhao H., Wu L. , Liu Q., Ge Y.,Chen E.,(2014)Investment Recommendation in P2P Lending: A Portfolio Perspective with Risk Management,2014 IEEE International Conference on Data Mining
中文文獻 1. 呂美慧(2000)。金融機構房貸客戶授信評量模式分析-Logistic迴歸之應用,政治大學金融研究所碩士論文 2. 陳志龍(2006)。運用類神經網路與技術指標預測股票型基金漲跌及交易時機之研究-以臺灣50指數股票型基金為例。碩士論文。國立朝陽科技大學資管所 3. 陳松興, 江俊豪. (2016). 中國大陸互聯網金融之網路借貸 (Peer-to-Peer lending) 發展對台灣數位金融之影響研究—以風險監理角度. 兩岸金融季刊, 4(1), 103-115. 4. 葉怡成(2004)。應用類神經網路。台北市:儒林圖書。 5. 蔡瑞煌(1995)。類神經網路概論。台北市:三民書局。 6. 蔡瑞煌, 高明志, 張金鶚. (1999). 類神經網路應用於房地產估價之研究. 住宅學報, 8, 001-020. 7. 魏如龍(2003)。類神經網路於不動產價格預估效果之研究。碩士論文。國立政治大學地政研究所。 8. 簡禎富, 許嘉裕(2014)。資料挖礦與大數據分析。新北市:前程文化。 |