English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113961/144987 (79%)
Visitors : 51989205      Online Users : 806
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/113738


    Title: 一個高精確的虹膜特徵擷取方法及其在虹膜辨識的應用
    A High Precision Iris Feature Extraction and Its Application in Iris Recognition
    Authors: 朱家德
    陳慶瀚
    Keywords: 補數法;符號元表示法;二元法;模指數運算;公開密碼學
    iris recognition wavelet transform probabilistic neural network
    Date: 2005
    Issue Date: 2017-10-17 17:05:42 (UTC+8)
    Abstract: 本文提出一種新的高性能虹膜特徵擷取方法。首先我們規劃了一個簡單快速的瞳孔位置偵測方法接著以瞳孔中心座標為參考點,擷取環狀虹膜區塊影像,並將其切割多個等分的長條影像,我們應用索貝爾轉換去增強虹膜紋路特徵,再藉由垂直投影得到一維能量訊號,此一能量訊號經由一維小波轉換有效縮減其維度同時抑制其高頻雜訊。最後,基於此一虹膜特徵擷取方法,我們以機率式類神經網路分類器來進行虹膜識別的實驗。CASIA 虹膜資料庫被用去評估所提出的方法並與傳統方法的性能做比較。實驗的結果證明提出演算法在虹膜辨識不僅有相當好的辨識性能,同時有較小的特徵維度和辨識效率,十分適合實現於嵌入式系統或有硬體資源限制的即時系統。
    In this paper, a novel technique is proposed for high performance iris feature extraction. First, we elaborate a simple and fast iris location method and extract an iris image by the center coordinate of pupil. The iris image will be stretched into a rectangle block and the block is segmented many parts. We adopt Sobel transform to enhance iris texture, vertical projection to obtain one dimension energy signal, and one dimension wavelet transform to reduce the feature vectors of the energy signal and restrain the high frequency noise. Finally, probabilistic neural network (PNN) is regarded as a classifier for iris recognition. A comparative experiment of existing methods for iris recognition is evaluated on CASIA iris image databases. The experimental results reveal the proposed algorithm provides superior performance in iris recognition, but it has still small feature dimension and recognition efficiency. These prove the proposed method is suitable for embedded system or real-time system in resource-constrained.
    Relation: TANET 2005 台灣網際網路研討會論文集
    資訊安全技術
    Data Type: conference
    Appears in Collections:[TANET 台灣網際網路研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    354.pdf94KbAdobe PDF2834View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback