Reference: | 1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. “TensorFlow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016. 2. Arner, D. W., Barberis, J., & Buckley, R. P., “The Evolution of Fintech: A New Post-Crisis Paradigm?”, 2015. 3. Babcock, B., Datar, M., & Motwani, R. “Sampling from a moving window over streaming data,” Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, January 2002, pp. 633-634. 4. Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., & Movellan, J., “Recognizing facial expression: machine learning and application to spontaneous behavior,” Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference, Vol. 2, June 2005, pp. 568-573. 5. Catanzaro, B., Sundaram, N., & Keutzer, K., “Fast support vector machine training and classification on graphics processors,” Proceedings of the 25th international conference on Machine learning. ACM, July 2008, pp. 104-111. 6. Chen, A. S., Leung, M. T., & Daouk, H., “Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index.” Computers & Operations Research 30(6), 2003, pp. 901-923. 7. Clark, J, “Google Turning Its Lucrative Web Search Over to AI Machines,” Bloomberg Technology, August 2015 (available online at https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines). 8. Cohen, W. W., Machine Learning Proceedings 1994: Proceedings of the Eighth, International Conference. Morgan Kaufmann., 2017. 9. Google Brain, “TensorFlow,” Google Brain, 2017, available online at https://www.TensorFlow.org/. 10. Hull, J. C., Options, futures, and other derivatives. Pearson Education India, 2006. 11. Heakal R., “Futures Fundamentals: Characteristics”, Investopedia (available online at http://www.investopedia.com/university/futures/futures4.asp). 12. Hornik, K., Stinchcombe, M., & White, H., “Multilayer feedforward networks are universal approximators,” Neural networks, 2(5), 1989, pp359-366. 13. Kashani, M. N., Aminian, J., Shahhosseini, S., & Farrokhi, M., “Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique,” Chemical Engineering Research and Design, 90(7), 2012, pp. 938-949. 14. Metz C., “TensorFlow, Google’s Open Source AI, Signals Big Changes in Hardware Too,” Wired.com, November 2015 (available online at https://www.wired.com/2015/11/googles-open-source-ai-TensorFlow-signals-fast-changing-hardware-world/). 15. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. “GPU computing,” Proceedings of the IEEE, 96(5), 2008, pp. 879-899. 16. Rampasek, L., & Goldenberg, A., “TensorFlow: Biology’s gateway to deep learning?,” Cell systems, 2(1), 2016, pp. 12-14. 17. Scherer, K. R., “Studying the emotion-antecedent appraisal process: An expert system approach,” Cognition & Emotion, 7(3-4), 1993, pp. 325-355. 18. Stoll, H. R., & Whaley, R. E., “Commodity index investing and commodity futures prices,” 2015. 19. Thomson Reuters, “Google`s AI beats human champion at Go,” CBC News, January 2016 (available online at http://www.cbc.ca/news/technology/alphago-ai-1.3422347). 20. Tsaih, R. R., “The softening learning procedure,” Mathematical and computer modelling, 18(8), 1993, pp. 61-64. 21. Tsaih, R. R., “Reasoning neural networks,”. Mathematics of Neural Networks, 1997, pp. 366-371. 22. Tsaih, R., Hsu, Y., & Lai, C. C., “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems, 23(2), 1998, pp. 161-174. 23. Whaley, R. E., “Understanding the VIX,” The Journal of Portfolio Management, 35(3), 2009, pp. 98-105. 24. Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. A., “Multi-gpu training of convnets,” arXiv preprint arXiv:1312.5853, 2013. 25. ZhaoZhi-Ming, Overview of Futures,Winson Taipei, 1993. |