English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50940460      Online Users : 961
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/113128
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/113128


    Title: 以推敲可能性模式探討影響評論幫助性之因素
    Factors Affecting Review Helpfulness : An Elaboration Likelihood Model Perspective
    Authors: 熊耿得
    Hsiung, Keng-Te
    Contributors: 梁定澎
    莊皓鈞

    Liang, Ting-Peng
    Chuang, Howard Hao-Chun

    熊耿得
    Hsiung, Keng-Te
    Keywords: 評論幫助性
    推敲可能性模式
    LDA主題模型
    環狀情緒模型
    情感分析
    Review helpfulness
    Elaboration likelihood model
    Latent dirichlet allocation
    Circumplex model
    Sentiment analysis
    Date: 2017
    Issue Date: 2017-09-28 10:42:00 (UTC+8)
    Abstract: 在電子商務中,評論會影響消費者的購買決策,透過評論幫助性可以篩選出關鍵的評論,以利消費者進行決策。本研究以推敲可能性模式作為研究架構,透過文字探勘挖掘評論的文本特性來探討影響幫助性之要素,中央線索除了評論長度與可讀性外,利用LDA主題模型衡量評論主題廣度;周邊線索則是透過環狀情緒模型進行情感分析,並透過評論者排名來衡量來源可信度,利用亞馬遜商店中的資料進行驗證分析。結果發現,消費者在判斷評論幫助性時,會參考中央以及周邊線索。具備高論點品質的中央線索將有效提升評論幫助性;周邊線索整體而言,證實了社會中存在負向偏誤,具備喚起度的負向情感較容易提升評論幫助性,而評論是否被認為有幫助確實會受到評論者的排名所影響。進階分析結果顯示,周邊的情感效果會受到評論者排名高低的影響,前段評論者應保持中立避免帶有個人情緒;中段評論者的評論幫助性會隨著情緒喚起度而增加;後段評論者則需要增加自身的負向情感,才能夠對於評論幫助性有正向影響。
    Online reviews are important factors in consumers’ purchase decision. The helpfulness of reviews allows consumers to quickly identify useful reviews. The purpose of this study is to investigate the nature of online reviews that affect their helpfulness through the lens of the elaboration likelihood model. For the central cues, we adopt latent dirichlet allocation to measure review breadth in addition to review length and review readability. For the peripheral cues, we use the sentiment analysis based on the circumplex model to catch the emotion effect and use the ranking of the reviewers to measure the source credibility. We used a dataset collected from Amazon.com to evaluate our model. The result suggests that consumers focus both central and peripheral cues when they read reviews. Consumers care about the length, breadth and readability of reviews associated with the central route, and the emotional effects associated with the peripheral route. In the advanced research, we split our sample into 3 groups by their ranking of the reviewers. We found that the top reviewers should keep neutral and avoid personal feelings to make their reviews more helpful; the middle reviewers can use more arousal words to improve their review helpfulness; the bottom reviewers must increase their emotional valence strength, especially the negative emotion to higher the perceived review helpfulness.
    Reference: 王韋堯, 黃詩珮, & 劉怡寧. (2012). 消費品廣告設計之情緒效價與喚起分析. 設計學報 (Journal of Design), 17(3).
    陳怡安. (2008). 口碑基本概論: 以口碑領域文獻為依據.
    黃俊堯, & 柳秉佑. (2016). 消費者線上口碑與評論研究:國內外相關文獻回顧與討論. 臺大管理論叢, 26(3), 215 - 256.
    Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 4(3), 291-295.
    Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of Online Consumer Reviews: Readers` Objectives and Review Cues. International Journal of Electronic Commerce, 17(2), 99-126.
    Bellezza, F. S., Greenwald, A. G., & Banaji, M. R. (1986). Words high and low in pleasantness as rated by male and female college students. Behavior Research Methods, Instruments, & Computers, 18(3), 299-303.
    Berger, J. (2011). Arousal Increases Social Transmission of Information. Psychological Science, 22(7), 891-893.
    Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205.
    Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31-40.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
    Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Retrieved from
    Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word frequencies. Behavior research methods, 44(4), 991-997.
    Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521.
    Chang, J., Boyd-Graber, J. L., Gerrish, S., Wang, C., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Paper presented at the Nips.
    Chen, X., Sheng, J., Wang, X., & Deng, J. (2016). Exploring Determinants of Attraction and Helpfulness of Online Product Review: A Consumer Behaviour Perspective. Discrete Dynamics in Nature and Society, 2016(1), 1-19.
    Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354.
    Chung, H. C., Lee, H., Koo, C., & Chung, N. (2017). Which Is More Important in Online Review Usefulness, Heuristic or Systematic Cue? Information and Communication Technologies in Tourism 2017 (pp. 581-594): Springer.
    Cox, D. F. (1967). Risk taking and information handling in consumer behavior.
    Day, G. S. (1971). Attitude change, media and word of mouth. Journal of Advertising Research.
    Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2012). Harnessing the Experience Web to Support User-Generated Product Reviews. Paper presented at the 20th International Conference on Case-Based Reasoning, Lyon, France.
    eMarketer. (2016). Worldwide Retail Ecommerce Sales Will Reach $1.915 Trillion This Year. Retrieved from https://www.emarketer.com/Article/Worldwide-Retail-Ecommerce-Sales-Will-Reach-1915-trillion-This-Year/1014369
    Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
    Flesch, R. (1948). A new readability yardstick. Journal of applied psychology, 32(3), 221.
    Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313.
    Fox, E. (2008). Emotion science cognitive and neuroscientific approaches to understanding human emotions: Palgrave Macmillan.
    Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235.
    Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-52.
    Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. The Journal of Marketing, 50-68.
    Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.
    Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201-214.
    Hwang, S.-Y., Lai, C.-Y., Chang, S., & Jiang, J.-J. (2015). The identification of noteworthy hotel reviews for hotel management. Pacific Asia Journal of the Association for Information Systems, 6(5).
    Kiecker, P., & Cowles, D. (2002). Interpersonal communication and personal influence on the Internet: A framework for examining online word-of-mouth. Journal of Euromarketing, 11(2), 71-88.
    Kuan, K. K. Y., Smith, J., Liu, N., & Poon, S. K. (2016). The Role of Review Arousal in Online Reviews: Insights from EEG Data. Paper presented at the The Pacific Asia Conference on Information Systems (PACIS), Chia-Yi, Taiwan.
    Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior research methods, 44(4), 978-990.
    Laroche, M., Babin, B. J., Lee, Y.-K., Kim, E.-J., & Griffin, M. (2005). Modeling consumer satisfaction and word-of-mouth: restaurant patronage in Korea. Journal of Services Marketing, 19(3), 133-139.
    Latent Dirichlet allocation - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
    Lee, C. M., Narayanan, S. S., & Pieraccini, R. (2002). Combining acoustic and language information for emotion recognition. Paper presented at the INTERSPEECH.
    Liang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in Consumer Reviews Affects the Sales of Mobile Apps: A Multifacet Sentiment Analysis Approach. International Journal of Electronic Commerce, 20(2), 236-260.
    Luan, P., Zhang, N., & Han, Y. (2014). The Study on Influences of Online Review Helpfulness. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China.
    Mankad, S., Han, H. S., Goh, J., & Gavirneni, S. (2016). Understanding Online Hotel Reviews Through Automated Text Analysis. Service Science, 8(2), 124-138.
    Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology: the MIT Press.
    Mousavizadeh, M., Koohikamali, M., & Salehan, M. (2015). The Effect of Central and Peripheral Cues on Online Review Helpfulness: A Comparison between Functional and Expressive Products. ICIS.
    Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185-200.
    Nielsen. (2015). Global Trust in Advertising Report. Retrieved from https://www.nielsen.com/content/dam/nielsenglobal/apac/docs/reports/2015/nielsen-global-trust-in-advertising-report-september-2015.pdf
    Nimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods, 16(4), 650-674.
    Palese, B., & Piccoli, G. (2016). Online Reviews as a Measure of Service Quality. Paper presented at the 2016 Pre-ICIS SIGDSA/IFIP WG8.3 Symposium, Dublin, Ireland.
    Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
    Peng, C.-H., Yin, D., Wei, C.-P., & Zhang, H. (2014). How and when review length and emotional intensity influence review helpfulness: Empirical evidence from Epinions. com.
    Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of Personality and Social Psychology, 41(5), 847.
    Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and peripheral routes to advertising effectiveness: The moderating role of involvement. Journal of consumer research, 10(2), 135-146.
    Rozin, P., & Royzman, E. B. (2001). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296-320.
    Russell, J. A. (1980). A circumplex model of affect. Journal of Personalityand Social Psychology, 39(6), 1171-1178.
    Salehan, M., & Kim, D. J. (2016). Predicting the Performance of Online Consumer Reviews: A Sentiment Mining Approach to Big Data Analytics. Decision Support Systems, 81(C), 30-40.
    Siering, M., & Muntermann, J. (2013). What Drives the Helpfulness of Online Product Reviews? From Stars to Facts and Emotions. Paper presented at the WIRTSCHAFTSINFORMATIK, Atlanta, GA.
    Skowronski, J. J., & Carlston, D. E. (1989). Negativity and extremity biases in impression formation: A review of explanations. Psychological bulletin, 105(1), 131.
    Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440.
    Wang, X. S., Mai, F., & Chiang, R. H. L. (2013). Database Submission—Market Dynamics and User-Generated Content About Tablet Computers. Marketing Science, 33(3), 449-458.
    Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior research methods, 45(4), 1191-1207.
    Yin, D., Bond, S. D., & Zhang, H. (2014). ANXIOUS OR ANGRY? EFFECTS OF DISCRETE EMOTIONS ON THE PERCEIVED HELPFULNESS OF ONLINE REVIEWS. MIS Quarterly, 38(2), 539-560.
    Yin, G., Wei, L., Xu, W., & Chen, M. (2014). Exploring heuristic cues for consumer perceptions of online reviews helpfulness: The case of yelp.com. Paper presented at the The Pacific Asia Conference on Information Systems, Chengdu, China.
    Yin, G., Zhang, Q., & Li, Y. (2014). Effects of Emotional Valence and Arousal on Consumer Perceptions of Online Review Helpfulness. Paper presented at the Americas Conference on Information Systems, Savannah, US.
    Zhu, L., Yin, G., & He, W. (2014). Is This Opinion Leader’s Review Useful? Peripheral Cues for Online Review Helpfulness. Journal of Electronic Commerce Research, 15(4), 267-280.
    Description: 碩士
    國立政治大學
    資訊管理學系
    105356015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356015
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    601501.pdf3921KbAdobe PDF2212View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback