English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804653      Online Users : 802
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/112616
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/112616


    Title: 應用多重插補法在包含遺漏資料的離散選擇模型
    Applying Multiple Imputation to the Discrete Choice Model with Missing Data
    Authors: 簡廷翰
    Jian, Ting Han
    Contributors: 鄭宗記
    Cheng, Tsung Chi
    簡廷翰
    Jian, Ting Han
    Keywords: 多重差補法
    離散選擇模型
    Multiple imputation
    Discrete choice model
    Date: 2017
    Issue Date: 2017-09-13 14:11:41 (UTC+8)
    Abstract: 此篇文章探討,使用離散選擇模型(discrete choice model)中的邏輯模型(logit model)分析,若資料具有遺漏值(incomplete-data),比較將具有遺漏值樣本值皆移除與使用多重插補方法補值之參數估計結果。
    本文使用的多重差補法為Buuren(2007)等人所提出的Multiple Imputation by Chained Equation(MICE)多重插補方法進行補值,並使用Rubin(1987)所提出的方法合併參數估計結果。從模擬結果之參數偏誤盒狀圖可知插補後參數估計與設定參數差異不大,另外插補次數對於參數估計結果影響不大,且在遺漏比例(missing percentage)大時,參數估計結果比起將具有遺漏值樣本直接移除的參數估計較為穩定。
    另外使用實際資料分析,發現具有遺漏值樣本直接移除的參數估標準差比起插補後參數估計標準差大的趨勢,與模擬結果相同。
    This paper focuses on using discrete choice logit model to analyze incompleted data. To deal with the incompleted data, complete case analysis and multiple imputation are used, and compare the result of parameter estimates of the two methods.
    The method of multiple imputation which this paper used is Multiple Imputation by Chained Equation (MICE). With the estimates from multiple imputed data sets, using Rubin’s method (1987) to pool the estimates. The simulation shows that after imputing the missing values, the estimates from the imputed data are not much difference from the real parameters. The number of imputation does not effect the estimates much. With larger missing percentage, the estimates from the imputed data is more robust than the estimates from the complete case analysis.
    In real data analysis, the standard deviation of estimates from using complete case analysis are bigger than imputed data, this result is the same with the simulation.
    Reference: Atkinson, A. C. and T.-C. Cheng (2000). On Robust Linear Regression with Incomplete Data,
    Computational Statistics and Data Analysis, 33, 361-380.
    Azur, M. J., E. A. Stuart, C. Frangakis, and P. J. Leaf, (2011).Multiple Imputation by Chained Equations: What is it and how does it work?
    International Journal of Methods in Psychiatric Research, 20(1), 40–49.
    David A. Hensher, John M. Rose, William H. Greene (2015).Applied Choice Analysis,
    CAMBRIDGE UNIVERSITY PRESS.
    Gerko Vink, Laurence E. Frank, Jeroen Pannekoek, Stef van Buuren(2014).Predictive mean matching imputation of semicontinuous variables,
    Statistica Neerlandica Vol. 68, nr. 1, pp. 61–90
    Kenneth E. Train (2003), Discrete Choice Methods with Simulation,
    CAMBRIDGE UNIVERSITY PRESS.
    Kenneth E. Train, Yves Croissant, Kenneth Train’s exercises using the mlogit packages for R.
    Also available at https://cran.r-project.org/web/packages/mlogit/vignettes/Exercises.pdf
    James R. Carpenter and Michael G. Kenward (2013).Multiple Imputation and its application,
    Wiley.
    John W. Graham (2012).Missing Data-Analysis and Design,
    Springer.
    Jordan J. Louviere, David A. Hensher, Joffre D. Swait (2000).Stated Choice Methods-Analysis and Application,
    CAMBRIDGE UNIVERSITY PRESS.
    Peter C. Boxall and Wiktor L. Adamowicz (2002). Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach,
    Environmental and Resource Economics 23: 421–446
    Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys, New York :
    John Wiley & Sons.
    Rubin, D.B. (2002).Statistical Analysis with Missing Data Second Edition,
    Wiley.
    Van Buuren, S. and K. Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained Equations in R, Journal of Statistical Software, 45(3), 1-67.
    Also available at http://www.jstatsoft.org/v45/i03/
    Yves Croissant (2013).Estimation od multinomial logit model in R:The mlogit Packages .
    Also available at https://cran.rproject.org/web/packages/mlogit/vignettes/mlogit.pdf
    Description: 碩士
    國立政治大學
    統計學系
    104354001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1043540012
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    001201.pdf2210KbAdobe PDF237View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback