政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/112470
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113311/144292 (79%)
造访人次 : 50936448      在线人数 : 969
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/112470


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/112470


    题名: Query-based music recommendations via preference embedding
    作者: 陳志明
    蔡銘峰
    Chen, Chih Ming
    Tsai, Ming Feng
    Lin, Yu Ching
    Yang, Yi-Hsuan
    贡献者: 資科系
    关键词: Factorization;Recommender systems;Vector spaces;Heterogeneous preference embedding;Matrix factorizations;Music recommendation;Network embedding;Query-based recommendation;Search intentions;Similarity calculation;User`s preferences;Search engines
    日期: 2016-09
    上传时间: 2017-08-31 14:51:58 (UTC+8)
    摘要: A common scenario considered in recommender systems is to predict a user`s preferences on unseen items based on his/her preferences on observed items. A major limitation of this scenario is that a user might be interested in different things each time when using the system, but there is no way to allow the user to actively alter or adjust the recommended results. To address this issue, we propose the idea of "query-based recommendation" that allows a user to specify his/her search intention while exploring new items, thereby incorporating the concept of information retrieval into recommendation systems. Moreover, the idea is more desirable when the user intention can be expressed in different ways. Take music recommendation as an example: the proposed system allows a user to explore new song tracks by specifying either a track, an album, or an artist. To enable such heterogeneous queries in a recommender system, we present a novel technique called "Heterogeneous Preference Embedding" to encode user preference and query intention into low-dimensional vector spaces. Then, with simple search methods or similarity calculations, we can use the encoded representation of queries to generate recommendations. This method is fairly exible and it is easy to add other types of information when available. Evaluations on three music listening datasets confirm the effectiveness of the proposed method over the state-of-the-art matrix factorization and network embedding methods.
    關聯: RecSys 2016 - Proceedings of the 10th ACM Conference on Recommender Systems, 79-82
    数据类型: conference
    DOI 連結: http://dx.doi.org/10.1145/2959100.2959169
    DOI: 10.1145/2959100.2959169
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    79.pdf561KbAdobe PDF2529检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈