Reference: | Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. Auria, L., & Moro, R. A. (2008). Support vector machines (SVM) as a technique for solvency analysis. Bell, D. R., & Lattin, J. M. (1998). Shopping behavior and consumer preference for store price format: Why “large basket” shoppers prefer EDLP. Marketing Science, 17(1), 66-88. Berger, P., & Magliozzi, T. (1992). The effect of sample size and proportion of buyers in the sample on the performance of list segmentation equations generated by regression analysis. Journal of Direct Marketing, 6(1), 13-22. Bhattacharyya, S. (1999). Direct marketing performance modeling using genetic algorithms. INFORMS Journal on Computing, 11(3), 248-257. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM. Colombo, R., & Jiang, W. (1999). A stochastic RFM model. Journal of Interactive Marketing, 13(3), 2-12. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297 Coussement, K., Van den Bossche, F. A., & De Bock, K. W. (2014). Data accuracy`s impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees. Journal of Business Research, 67(1), 2751-2758. Cui, G., Wong, M. L., & Lui, H. K. (2006). Machine learning for direct marketing response models: Bayesian networks with evolutionary programming. Management Science, 52(4), 597-612. Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 9, 155-161. Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378. Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (Vol. 43). CRC press. Haughton, D., & Oulabi, S. (1997). Direct marketing modeling with CART and CHAID. Journal of Interactive Marketing, 11(4), 42-52. Hosseini, Seyed Mohammad Seyed, Anahita Maleki, and Mohammad Reza Gholamian. "Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty." Expert Systems with Applications 37.7 (2010): 5259-5264. Jean Halliday. (2002). Database Marketing: GM plays cards right. Retrieved January 14, 2017, from http://adage.com/article/interactive-media-marketing/database-marketing-gm-plays-cards/52084/ Jiang, W. (2002). On weak base hypotheses and their implications for boosting regression and classification. Annals of statistics, 51-73. Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149-176. Kahan, R. (1998). Using database marketing techniques to enhance your one-to-one marketing initiatives. Journal of Consumer Marketing, 15(5), 491-493. Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63. Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145). Kumar, V., Srinivasan, K., Rao, V. R., Zhang, Y., Bradlow, E. T., & Small, D. S. (2015). Commentaries and Reply on “Predicting Customer Value Using Clumpiness: From RFM to RFMC” by Yao Zhang, Eric T. Bradlow, and Dylan S. Small. Marketing Science, 34(2), 209-217. Ling, C. X., & Li, C. (1998, August). Data Mining for Direct Marketing: Problems and Solutions. In KDD (Vol. 98, pp. 73-79). Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of consumer marketing, 15(5), 494-504. McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression. Journal of business research, 60(6), 656-662. Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. Netzer, O., Lattin, J. M., & Srinivasan, V. (2008). A hidden Markov model of customer relationship dynamics. Marketing Science, 27(2), 185-204. Petrison, L. A., Blattberg, R. C., & Wang, P. (1997). Database marketing: Past, present, and future. Journal of Interactive Marketing, 11(4), 109-125. Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9(2), 181-199. Ridgeway, G. (2002). Looking for lumps: Boosting and bagging for density estimation. Computational Statistics & Data Analysis, 38(4), 379-392. Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. Update, 1(1), 2007. Schweidel, D. A., Bradlow, E. T., & Fader, P. S. (2011). Portfolio dynamics for customers of a multiservice provider. Management Science, 57(3), 471-486. Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20. Verhoef, P. C., Spring, P. N., Hoekstra, J. C., & Leeflang, P. S. (2003). The commercial use of segmentation and predictive modeling techniques for database marketing in the Netherlands. Decision Support Systems, 34(4), 471-481. Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic bulletin & review, 11(1), 192-196. Yeh, I. C., Yang, K. J., & Ting, T. M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications, 36(3), 5866-5871. Zhang, Y., Bradlow, E. T., & Small, D. S. (2013). New measures of clumpiness for incidence data. Journal of Applied Statistics, 40(11), 2533-2548. Zhang, Y., Bradlow, E. T., & Small, D. S. (2014). Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science, 34(2), 195-208. Zwilling M. L. (2013), “Negative Binomial Regression,” The Mathematica Journal, dx.doi.org/10.3888/tmj.15-6 林軒田 (民104年12月8日)。Machine Learning Foundation (機器學習基石) 【部落格影音資料】取自https://www.youtube.com/playlist?list=PLXVfgk9fNX2I7tB6oIINGBmW50rrmFTqf |