English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50800846      Online Users : 842
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/112209


    Title: 次微米陣列鎳鐵圓盤渦旋核心震盪所形成之微波控制頻率可調的自旋波源
    Frequency modulated spin waves generator via oscillating vortex cores in sub-micron NiFe disk array excited by electro-magnetic microwave
    Authors: 蔡禮在
    Tsai, Li-Zai
    Contributors: 李尚凡
    Lee, Shang-Fan
    蔡禮在
    Tsai, Li-Zai
    Keywords: 自旋波
    自旋波源
    Spin waves
    Spin waves generator
    Date: 2017
    Issue Date: 2017-08-28 11:42:18 (UTC+8)
    Abstract: 我們在實驗中實現以高頻磁場激發之自旋波發射源,此發射源不需外加直流磁場即可給出4GHz~13GHz頻率之自旋波。
    使用自旋波為訊息載體的元件只有自旋角動量傳遞而沒有電荷流動,可以從根本上解決歐姆熱耗散問題,但在近期研究中自旋波的產生往往只能在FMR下伴隨產生,或因為波源的形狀而限制了自旋波頻率,然而在我們的實驗裡以共面波導產生垂直樣品面的高頻磁場,震盪鎳鐵合金(Permalloy﹐Ni81Fe19)線上之圓盤型結構。因強交換耦合作用與形狀異向性,圓盤型結構的鎳鐵合金會形成磁渦漩態(magnetic vortex),且渦漩態中心會形成一塊垂直方向磁區,而此一磁區可以看作為點波源,此點波源即可解決頻率限制問題,且在這結構下不需直流外加場即可穩定存在,在高頻磁場震盪下即會傳播出自旋波。
    由布里淵散射儀(Brillouin light scattering, BLS)量測中,我們觀察到此自旋波由圓盤向外發射,且可以由改變導入共面波導微波的頻率來調控自旋波的頻率,電性量測中證實此自旋波在特定磁場下magnetic vortex會有不同的本徵模式(eigen mode)震盪。
    The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to promising applications as information carrier and for signal processing. However, a major challenge for this issue is the requirement to excite propagating spin waves with tunable GHz frequency in the magnonic circuits. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup and electrical measurement. In addition to the discrete ferromagnetic resonance (FMR) signals above external dc saturation magnetic field, we observed clear signals at zero magnetic field where vortex cores are present.
    Reference: [1] Bloch, F. Phys. 61, 206-219 (1930).
    [2] Vladislav E. Demidov,Sergei Urazhdin& Sergej O. Demokritov, Nature Mater. 9, 984–988 (2010).
    [3] M. Madami,S. Bonetti,G. Consolo,S. Tacchi,G. Carlotti,G. Gubbiotti,F. B. Mancoff,M. A. Yar & J. Åkerman, Nature Nanotech. 6, 635–638 (2011).
    [4] K. Vogt, F.Y. Fradin, J.E. Pearson, T. Sebastian, S.D. Bader, B. Hillebrands, A. Hoffmann & H. Schultheiss Nature Commun.5, 3727 (2014).
    [5] Haiming Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl & D. Grundler, Nature Commun.4, 2702 (2013).
    [6] Haiming Yu, O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach & D. Grundler, Nature Commun.7, 11255 (2016)
    [7] Ferran Macià, Dirk Backes & Andrew D. Kent,Nature Nanotech. 9, 992–996 (2014).
    [8] Mahdi Jamali, Jae Hyun Kwon, Soo-Man Seo, Kyung-Jin Lee & Hyunsoo Yang,Scientific Reports ,srep03160 (2013)
    [9] K. Wagner ,A. Kákay ,K. Schultheiss ,A. Henschke ,T. Sebastian ,H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
    [10] T. Sebastian, T. Brächer, P. Pirro, A. A. Serga, B. Hillebrands, T. Kubota, H. Naganuma, M. Oogane, and Y. Ando,Phys. Rev. Lett. 110, 067201 (2013)
    [11] A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. V. Grishin, S. E. Sheshukova, and S. A. Nikitov, Appl, Phys. Lett. 109, 042407 (2016)
    [12] T. Sebastian, Y. Ohdaira, T. Kubota, P. Pirro, T. Brächer, K. Vogt, A. A. Serga1, H. Naganuma, M. Oogane, Y. Ando, and B. Hillebrands, Appl. Phys. Lett. 100, 112402 (2012)
    [13] P. Pirro, T. Brächer, A. V. Chumak, B. Lägel, C. Dubs, O. Surzhenko, P. Görnert, B. Leven, and B. Hillebrands, Appl. Phys. Lett. 104, 012402 (2014)
    [14] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kima, Appl. Phys. Lett. 100, 172413 (2012)
    [15] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
    [16] Ki-Suk Lee, Phys. Rev. B 76, 174410(2007)
    [17] Ki-Suk Lee, Konstantin Y. Guslienko, Jun-Young Lee, and Sang-Koog Kim, Journal of Applied Physics 102, 043908 (2007)
    [18] Markus Bolte, Guido Meier, Benjamin Krüger, André Drews, René Eiselt, Lars Bocklage, Stellan Bohlens, Tolek Tyliszczak, Arne Vansteenkiste, Bartel Van Waeyenberge, Kang Wei Chou, Aleksandar Puzic, and Hermann Stoll, Phys. Rev. Lett. 100, 176601(2008)
    [19] Sang-Koog Kima, Youn-Seok Choi, Ki-Suk Lee, Konstantin Y. Guslienko, and Dae-Eun Jeong, Appl. Phys. Lett. 91, 082506 (2007)
    [20] Ming Chen, Mincho A. Tsankov,Jon M. Nash, and Carl E. Patton ,PhysRevB.49.12773(1994)
    [21] L. R. Walker, Phys. Rev. 105, 390 (1957)
    [22] Robert C. O. Handley, “Modern Magnetic Materials–Principles and Applications”, Wiley-Interscience, 1999.
    [23] N. A. Spaldin, “Magnetic Materials-Fundamentals and Device Applications”, Cambridge university press, 2003.
    [24] Tomas Jungwirth, Jörg Wunderlich & Kamil Olejník ,NATURE MATERIALS 11, 382–390 (2012)
    [25] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa & E. Saitoh, Nature 464, 262-266 (2010)
    [26] E. Saitoha, M. Ueda, and H. Miyajima, Appl. Phys. Lett. 88, 182509 (2006)
    [27] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kim, Appl. Phys. Lett. 100, 172413 (2012)
    [28] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
    [29] Ayaka Tsukahara,Yuichiro Ando,Yuta Kitamura,Hiroyuki Emoto,Eiji Shikoh,Michael P. Delmo,Teruya Shinjo,and Masashi Shiraishi, Phys. Rev. B 89, 235317 (2014)
    [30] R. Iguchi,K. Ando,Z. Qiu,T. An, E. Saitoh, and T. Sato,Appl. Phys. Lett. 102, 022406 (2013)
    [31] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian & H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
    Description: 碩士
    國立政治大學
    應用物理研究所
    104755004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104755004
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback