政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/112153
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113324/144300 (79%)
Visitors : 51152300      Online Users : 842
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/112153
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/112153


    Title: 自動駕駛車的新資訊科技角色之研究
    A study of the emerging role of information technology in the autonomous car
    Authors: 蔡懿安
    Contributors: 尚孝純
    蔡懿安
    Keywords: 資訊科技
    資訊系統
    人工智慧
    自動駕駛車
    決策制定
    Information technology
    Information system
    Artificial intelligence
    Autonomous car
    Decision-making
    Date: 2017
    Issue Date: 2017-08-28 11:25:05 (UTC+8)
    Abstract: 資訊科技(Information Technology, IT)對我們的生活與企業帶來極大的影響與改變。在企業中,資訊科技經常扮演不同的角色,這些不同的資訊科技角色(IT Role)可以自動化企業流程、支援決策制定、整合資源,甚至實現轉型與創新,對於企業的決策帶來不同層面的影響。而我們從近年來新興的資訊科技─大數據與人工智慧技術中,發現了不同於過去的新資訊科技角色。為了近一步了解這個新角色,本研究選擇人工智慧應用之一的自動駕駛車作為研究案例。本研究目的是探討自動駕駛車的資訊科技所扮演的新資訊科技角色;研究問題包含 (1) 自動駕駛車的資訊科技如何影響駕駛決策制定 (2) 在決策制定過程中,人與資訊科技分別扮演何種角色與職責。

    本研究採用多個案研究法,分為兩個階段。首先,為解構資訊科技的決策制定流程,本研究依據決策理論與系統理論建構一研究架構。於文獻探討的章節中,本研究根據過往文獻與案例,提出四種企業常見的資訊科技角色─Automation、Supporter、Mentor與Enabler,並將研究架構應用於以上資訊科技角色以進行調整與驗證。接著,本研究選擇Google (Waymo)與Tesla作為自動駕駛車的研究個案,並將研究架構套用於兩個個案研發的自動駕駛車。由於不同的自動駕駛車研發理念與實現方式,Google與Tesla自動駕駛車的資訊科技分別扮演兩種不同的資訊科技角色─Autonomer與Smart Automation,本研究進一步比較所有資訊科技角色的研究架構結果,了解資訊科技角色的特性、影響與適用的決策類型。

    自動駕駛的決策問題與環境與過去有極大的不同。為了實現安全的自動駕駛,資訊科技需要的資料類型更加多元,除了傳統數位類型資料,也需要收集周遭環境的3D影像等資料;另外,由於決策從過去的靜態問題轉移到動態與快速變化、擁有爆炸性資料與資訊的環境中,資訊科技需要更多的應變能力以制定更即時與適當的決策。由於資料、決策問題與環境的改變,企業對於資訊科技能力的需求也隨之改變,從自動駕駛車的個案中,本研究發現原本的資訊科技角色(Automation、Supporter、Mentor、Enabler)並不具備能應對如此動態與快速變化的決策問題與環境的能力,因而根據個案提出有能力實現動態即時決策制定的兩種新資訊科技角色。
    使用人工智慧技術的Google無人駕駛車扮演著Autonomer的角色。資訊科技角色Autonomer能夠與外界進行互動,並且能夠不斷地追蹤、反饋與修正以實現自我成長;此外,面對各種駕駛決策情境,也能夠在無人為干預的情況下獨力完成駕駛決策的制定。資訊科技的學習能力是面對未知與難以預測的問題的最大優勢,而Autonomer的自我學習與決策制定能力也是與其他資訊科技角色最大的不同之處。使用大數據技術的Tesla自動駕駛車的Autopilot系統扮演著Smart Automation。資訊科技角色Smart Automation擁有更進步的資料收集與分析能力,能夠在動態與快速變化的環境中處理更為複雜的決策問題;此外,面對各種駕駛決策情境,Autopilot系統能在駕駛人保持監督的條件下進行自動駕駛以駕駛輔助的方式減輕駕駛人的負擔。最後,我們發現對於決策制定,資訊科技不僅能扮演一個完全獨立的角色,也能夠扮演一個與人互補的角色。大部分的人工智慧如同Google無人駕駛車做為一個Autonomer的角色,但同時更多企業目前使用的資訊科技屬於Supporter、Mentor與Smart Automation以支援或強化決策者的能力。

    本研究探討在自動駕駛過程中不同資訊科技角色如何影響決策制定,以及駕駛人與資訊科技的角色與職責。並且從決策類型與資訊科技能力的角度,協助決策者與使用者全面地了解每個資訊科技角色的特性與適用的決策類型。此外,科技不斷在進步,本研究也提供一個了解各種資訊科技角色的基石,透過本研究的研究架構與方法,協助企業與決策者了解不同資訊科技對於決策的影響,本研究結果也能延伸應用於其他自動化、大數據與人工智慧相關領域,如無人工廠、吾人航空載具、工業4.0與金融科技(Fintech)。
    Information technology (IT) has brought great changes to people and business. In various applications, IT plays diverse roles that can automate business processes, support decision-making, integrate resources, and enable transformation and innovation and brings the impacts on different aspect of decision-making in enterprises. However, with the emerging technology of big data and artificial intelligence (AI), there is a new role for IT. To understand this role, we chose the autonomous car, an application of AI, as a study case. The objective of the research is to understand the new roles played by IT in the autonomous car. We focused on two questions: (1) how IT impacts decision-making in the autonomous car; and (2) what roles do IT and humans play during the decision-making process.

    This study applies a multiple case study in two phases. First, we built a conceptual framework, based on decision theory and system theory, to deconstruct the decision process of IT. To adjust and verify the framework, we applied it to actual cases and proposed IT roles of Automation, Supporter, Mentor and Enabler. Second, we applied the framework to the chosen autonomous car case studies, Google (Waymo) and Tesla, to explore the new role of IT in the autonomous car. Because of the different philosophies, there were two distinct roles played by IT in Google and Tesla’s autonomous cars, Autonomer and Smart Automation, respectively. We furthermore compared the frameworks of Google and Tesla, as well as the existing and new IT roles, explained the differences regarding the IT roles and decision types, and found out the applicable decision-making type of each IT roles..

    Compared to the past, there were the great differences for the decision problems and environment of autonomous driving. To realize the safe autonomous driving, the data IT required became more diverse including non-text or non-digit data; besides, the decision-making also changed from static decision problems into dynamic and rapid decision environment with the explosive data and information that IT required more resilience to make decision.
    Due to the changes of the data, decision problems and environment, the demand for IT capability also changed. From the cases of the autonomous car, we found the original roles including Automation, Supporter, Mentor and Enabler was not enough – they did not possess the capability to make the dynamic and instantaneous decision. Therefore, we proposed two new IT roles – Smart Automation and Autonomer in this research that these two new IT roles which were applicable to the dynamic and instantaneous decision-making.
    The computer of the Google driverless car using AI technology acted as an Autonomer that was responsible for interacting with the surroundings and being self-growing with continuous tracking and adjustment; furthermore, under driving decision circumstances, this computer could assume the entire decision-making process without human intervention. The self-learning and decision-making ability of Autonomer is the characteristic most different from other IT roles; additionally, the learning ability was the greatest strength for dealing with unknown and unpredictable circumstances.
    The Autopilot system of the Tesla self-driving car, leveraging big data technology, acted as a Smart Automation that could process more complex decision problems in the dynamic environment with the advancement of data collection and analysis ability; furthermore, under the driving decision circumstances, the Autopilot system of the Tesla self-driving car could temporarily take over the driving control to decrease the driving burden and provide assistance to make driving easier.
    According to the research results, IT can not only play a totally independent role but also a complementary role. Most AI played the same IT role – Autonomer, such as the computer of the Google driverless car; meanwhile, much of the IT introduced by businesses acted as Supporter, Mentor and Smart Automation to assist and complement humans.

    This research provided a perspective for identifying how the different IT roles impact decision-making while driving an autonomous car and clarify the responsibility of humans and IT in the driving experience; moreover, from the perspective of decision problems and IT ability, it also provided a comprehensive and general understanding for realizing the characteristics of diverse IT roles and the applicable decision problems.
    Reference: 1. Adair, J. E. (1973). Action-centred leadership. New York: McGraw-Hill.
    2. Anthony, R. N. (1965). Planning and Control: a Framework for Analysis. Cambridge MA: Harvard University Press.
    3. Ayre, J. (2017, January 25). Will Teslas Be Capable Of Fully Autonomous Driving Within Only 6 Months? (#ElonTweets). Retrieved from https://cleantechnica.com/2017/01/25/will-teslas-capable-fully-autonomous-driving-within-6-months-elontweets/
    4. Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report, 13(4), 544-559.
    5. Davis, B. (2017, May 18). 2017 Tesla Model S P100D review. Retrieved from http://performancedrive.com.au/2017-tesla-model-s-p100d-review-1821/
    6. Chang, T. -Y. (2016, September 14). Is Google, who insisted on the introduction of "full-automatic driving", being surpassed by "assisted autopilot" opponents? Business Next. Retrieved from https://www.bnext.com.tw/article/40968/google-self-driving-project-struggle
    7. Cunningham, W. (2016, December 18). Chrysler and Waymo set 100 Pacifica Hybrid minivans to autopilot. Retrieved from https://www.cnet.com/roadshow/news/chrysler-and-waymo-set-100-pacifica-hybrid-minivans-to-autopilot/
    8. Davenport, T. H., & Short, J. E. (1990). The new industrial engineering: IT and business process redesign. Sloan Management Review, 31(4), 11-27. Retrieved from http://search.proquest.com/docview/224963315?accountid=10067
    9. Drucker, P. F. (1968). Decision-making and the effective executive. The Bulletin of the National Association of Secondary School Principals, 52(328), 24-39.
    10. Drucker, P. F. (2001). Harvard business review on decision making. Boston: Harvard Business Publishing.
    11. Etherington, D., & Kolodny, L. (2016, December 13). Google’s self-driving car unit becomes Waymo. Retrieved from https://techcrunch.com/2016/12/13/googles-self-driving-car-unit-spins-out-as-waymo/
    12. Fu, C. (2016, September 22). The cognition of autonomous driving sensing technology: The talk about camera, radar, lidar and 3D mapping and the status and future of the autonomous driving. Retrieved from https://www.cool3c.com/article/111672
    13. Hoag, M. (2015, November 4). Google vs. Tesla: Two different philosophies on self-driving cars. Retrieved from https://innovately.wordpress.com/2015/11/04/google-vs-tesla-two-different-philosophies-on-self-driving-cars/
    14. Lambert, F. (2017, March 29). Tesla releases 8.1 software update and improves Autopilot 2.0 features: Autosteer 80 mph and Summon. Retrieved from https://electrek.co/2017/03/29/tesla-8-1-software-update-improves-autopilot-2-autosteer-summon/
    15. Gartner (2016, October 18). Gartner’s top 10 strategic technology trends for 2017. Gartner. Retrieved from http://www.gartner.com/technology/research/top-10-technology-trends/
    16. Google (2016, August). Google self-driving car project monthly report. Retrieved from https://static.googleusercontent.com/media/www.google.com/en//selfdrivingcar/files/reports/report-0816.pdf
    17. Google self-driving car project (2014). A first drive [official video]. USA: Google. Retrieved from https://www.youtube.com/watch?v=CqSDWoAhvLU
    18. Google self-driving car project (2015). Ready for the road [official video]. USA: Google. Retrieved from https://www.youtube.com/watch?v=uCezICQNgJU
    19. Hammer, M. (1990). Reengineering work: Don`t automate, obliterate. Harvard Business Review, 68(4), 104-112.
    20. Hoch, J. S., Kunreuther, C. H., & Gunther, E. R. (2004). Wharton on Making Decisions publisher. New Jersy: Wiley.
    21. Kroenke, D. (2015). MIS Essentials (4th Ed.). Boston: Pearson. p. 10.
    22. Lambert, F. (2016, October 20). Tesla`s software timeline for `Enhanced Autopilot` transition means `Full Self-Driving Capability` as early as next year. Electrek. Retrieved from https://electrek.co/2016/10/20/tesla-enhanced-autopilot-full-self-driving-capability/
    23. Lambert, F. (2016, November 10). Tesla orders 3rd-party survey to prove owners understand `Autopilot`, 98% say they do. Electrek. Retrieved from https://electrek.co/2016/11/10/tesla-survey-owners-autopilot/
    24. Lambert, F. (2017, April 29). Elon Musk clarifies Tesla’s plan for level 5 fully autonomous driving: 2 years away from sleeping in the car. Retrieved from https://electrek.co/2017/04/29/elon-musk-tesla-plan-level-5-full-autonomous-driving/
    25. Laudon, K. C., & Laudon, J. P. (2012). Management information systems: Managing the digital firm (12th Ed.). Upper Saddle River, NJ: Prentice Hall. Retrieved from http://fms.uofk.edu/multisites/UofK_fms/images/pdf/mis.pdf
    26. Lavrinc, D. (2012, April 16). Exclusive: Google Expands Its Autonomous Fleet With Hybrid Lexus RX450h. Wired. Retrieved from https://www.wired.com/2012/04/google-autonomous-lexus-rx450h/
    27. Lin, D.-Q. (2010). Management Information System: The Strategic Core Competence of e-Business. Taipei: Best-wise Publishing.
    28. Lutin, J. M., Kornhauser, A. L., & Masce, E. L. L. (2013). The revolutionary development of self-driving vehicles and implications for the transportation engineering profession. Institute of Transportation Engineers. ITE Journal, 83(7), 28-32. Retrieved from https://search.proquest.com/docview/1417586906?accountid=10067
    29. Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.
    30. Narla, S. R. (2013). The evolution of connected vehicle technology: From smart drivers to smart cars to... self-driving cars. Institute of Transportation Engineers.ITE Journal, 83(7), 22-26. Retrieved from https://search.proquest.com/docview/1417587025?accountid=10067
    31. Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55. Retrieved from https://arxiv.org/pdf/1604.07446.pdf
    32. Rifkin, J. (1998). The end of work: The decline of the global labor force and the dawn of the post-market era. New York: G.P. Putman`s Sons.
    33. Robbins, S. P. (2002). Management (7th Ed.). Upper Saddle River, New Jersy: Prentice Hall.
    34. Santo, D. (2016, July 7). Autonomous Cars` Pick: Camera, Radar, Lidar. Retrieved from http://www.eetimes.com/author.asp?section_id=36&doc_id=1330069
    35. Shi, Z. Z., & Zheng, N. N. (2006). Progress and challenge of artificial intelligence. Journal of Computer Science and Technology, 21(5), 810-822.
    36. Silver, M. S., Markus, M. L., & Beath, C. M. (1995). The information technology interaction model: A foundation for the MBA core course. MIS quarterly, 361-390.
    37. Simon, H. A. (1976). Administrative behavior: a study of decision-making processes in administrative organization (3rd Ed.). New York: The Free Press.
    38. Stewart, J. (2016, August 17). Tesla’s cars have driven 140M miles on Autopilot. here’s how wired. Retrieved from https://www.wired.com/2016/08/how-tesla-autopilot-works/
    39. Tesla (2016). Autopilot – Autopark [official video]. USA: Tesla, Inc. Retrieved from https://www.tesla.com/zh_TW/file/autopilot-%E2%80%94-autopark
    40. Tesla (2016). Autopilot – Autosteer [official video]. USA: Tesla, Inc. Retrieved from https://www.tesla.com/zh_TW/file/autopilot-%E2%80%94-autosteer
    41. Tesla (2016). Autopilot – Lane Change [official video]. USA: Tesla, Inc. Retrieved from https://vimeo.com/151359414
    42. Tettamanti, T., Varga, I., & Szalay, Z. (2016). Impacts of autonomous cars from a traffic engineering perspective. Periodica Polytechnica.Transportation Engineering, 44(4), 244-250.
    43. TIME Magazine (2015). How does Google`s driverless car work [official video]. USA: Protin Pictures. Retrieved from https://www.youtube.com/watch?v=ftouPdU1-Bo
    44. Wang, C. H. (2016). The research and development of autonomous driving continuously heated up, the radar and lidar sensors came up. Retrieved from http://www.2cm.com.tw/markettrend_content.asp?sn=1603280013
    45. Warrendale, Pa. (2016, September 22). U.S. Department of transportation’s new policy on automated vehicles adopts SAE International’s levels of automation for defining driving automation in on-road motor vehicles. SAE International. Retrieved from https://www.sae.org/news/3544/.
    46. Waymo (2016). Say hello to Waymo [official video]. USA: Waymo. Retrieved from https://www.youtube.com/watch?v=ftouPdU1-Bo
    47. Waymo (2017). Journey. Retrieved from https://waymo.com/journey/
    48. Waymo (2017). Millions of miles driven. Retrieved from https://waymo.com/ontheroad/
    49. Waymo (2017). Waymo keynote at NAIAS AutoMobili-D 2017 [official video]. USA: Waymo. Retrieved from https://www.youtube.com/watch?v=xRGIlwgc--g
    50. Weinberg, G. M. (1986). Becoming a Technical Leader: An Organic Problem-Solving Approach. New York: Dorset House Publishing.
    51. Yin, R. K. (2009). Case study research: Design and methods (4th Ed.). Thousand Oaks, CA: Sage.
    Description: 碩士
    國立政治大學
    資訊管理學系
    104356010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104356010
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    601001.pdf2239KbAdobe PDF2232View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback