English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51041582      Online Users : 927
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/111988
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111988


    Title: Recognizing live fish species by hierarchical partial classification based on the exponential benefit
    Authors: 沈錳坤
    Chuang, Meng-Che
    Hwang, Jenq-Neng
    Kuo, Fang-Fei
    Shan, Man-Kwan
    Williams, Kresimir
    Contributors: 資訊科學系
    Keywords: exponential benefit;feature extraction;hierarchical partial classification;live fish recognition;underwater imagery
    Date: 2014-01
    Issue Date: 2017-08-16 17:04:51 (UTC+8)
    Abstract: Live fish recognition in open aquatic habitats suffers from the high uncertainty in many of the data. To alleviate this problem without discarding those data, the system should learn a species hierarchy so that high-level labels can be assigned to ambiguous data. In this paper, a systematic hierarchical partial classification algorithm is therefore proposed for underwater fish species recognition. Partial classification is applied at each level of the species hierarchy so that the coarse-to-fine categorization stops once the decision confidence is low. By defining the exponential benefit function, we formulate the selection of decision threshold as an optimization problem. Also, attributes from important fish anatomical parts are focused to generate discriminative feature descriptors. Experiments show that the proposed method achieves an accuracy up to 94%, with partial decision rate less than 5%, on underwater fish images with high uncertainty and class imbalance. © 2014 IEEE.
    Relation: 2014 IEEE International Conference on Image Processing, ICIP 2014,5232-5236
    Data Type: conference
    DOI 連結: http://dx.doi.org/10.1109/ICIP.2014.7026059
    DOI: 10.1109/ICIP.2014.7026059
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2537View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback