Reference: | [1] Box, George EP, et al. Time series analysis: forecasting and control. John Wiley & Sons, 2015. [2] Breiman, Leo. ”Random forests.” Machine learning 45.1 (2001): 5-32. [3] Brodersen, Kay H., et al. ”Inferring causal impact using Bayesian structural timeseries models.” The Annals of Applied Statistics 9.1 (2015): 247-274. [4] Dietterich, Thomas G. ”Ensemble methods in machine learning.” International workshop on multiple classifier systems. Springer Berlin Heidelberg, 2000. [5] Elwert, Felix. ”Graphical causal models.” Handbook of causal analysis for social research. Springer Netherlands, 2013. 245-273. [6] Gerner, Deborah J., et al. ”Conflict and mediation event observations (CAMEO): A new event data framework for the analysis of foreign policy interactions.” International Studies Association, New Orleans (2002). [7] Granger, Clive WJ. ”Investigating causal relations by econometric models and cross-spectral methods.” Econometrica: Journal of the Econometric Society (1969): 424-438. [8] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. ”Overview of supervised learning.” The elements of statistical learning. Springer New York, 2009. 9-41. [9] Jiang, Lei, and Fan Mai. ”Discovering bilateral and multilateral causal events in GDELT.” international conference on social computing, behavioral-cultural modeling, and prediction, Washington, DC. 2014. [10] Kane, Michael J., et al. ”Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks.” BMC bioinformatics 15.1 (2014): 276. [11] Keertipati, Swetha, et al. ”Multi-Level Analysis of Peace and Conflict Data in GDELT.” Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. ACM, 2014. [12] Kumar, Sumeet, Matthew Benigni, and Kathleen M. Carley. ”The impact of US cyber policies on cyber-attacks trend.” Intelligence and Security Informatics (ISI), 2016 IEEE Conference on. IEEE, 2016. [13] Leetaru, Kalev, and Philip A. Schrodt. ”Gdelt: Global data on events, location, and tone, 1979ȉ 2012.” ISA Annual Convention. Vol. 2. No. 4. 2013. [14] Lindquist, Martin A., and Michael E. Sobel. ”Graphical models, potential outcomes and causal inference: Comment on Ramsey, Spirtes and Glymour.” NeuroImage 57.2 (2011): 334-336. [15] Neyman, Jersey. ”Sur les applications de la théorie des probabilités aux experiences agricoles: Essai des principes.” Roczniki Nauk Rolniczych 10 (1923): 1-51. [16] Norris, Clayton. ”Petrarch 2: Petrarcher.” arXiv preprint arXiv: 1602.07236 (2016). [17] Pai, Ping-Feng, and Chih-Sheng Lin. ”A hybrid ARIMA and support vector machines model in stock price forecasting.” Omega 33.6 (2005): 497-505. [18] Pearl, Judea. ”Graphical models, potential outcomes and causal inference: comment on Linquist and Sobel.” NeuroImage 58.3 (2011): 770. [19] Racette, Mark P., et al. ”Improving situational awareness for humanitarian logistics through predictive modeling.” Systems and Information Engineering Design Symposium (SIEDS), 2014. IEEE, 2014. [20] Rubin, Donald B. ”Causal inference using potential outcomes: Design, modeling, decisions.” Journal of the American Statistical Association 100.469 (2005): 322- 331. [21] Schrodt, Philip A. ”Automated coding of international event data using sparse parsing techniques.” annual meeting of the International Studies Association, Chicago. 2001. [22] Schrodt, Philip A., and Blake Hall. ”Twenty years of the Kansas event data system project.” Political Methodologist 14.1 (2006): 2-6. [23] Schrodt, Philip A., John Beieler, and Muhammed Idris. ”Threeȷ sa Charm?: Open Event Data Coding with EL: DIABLO, PETRARCH, and the Open Event Data Alliance.” ISA Annual Convention. 2014. [24] Wager, Stefan, and Susan Athey. ”Estimation and inference of heterogeneous treatment effects using random forests.” Journal of the American Statistical Association just-accepted (2017). [25] Yonamine, James E. A nuanced study of political conflict using the Global Datasets of Events Location and Tone (GDELT) dataset. Diss. The Pennsylvania State University, 2013. [26] Zaharia, Matei, et al. ”Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.” Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012. [27] Zaharia, Matei, et al. ”Spark: Cluster computing with working sets.” HotCloud 10.10-10 (2010): 95. [28] Zivot, Eric, and Jiahui Wang. ”Rolling Analysis of Time Series.” Modeling Financial Time Series with S-Plus®. Springer New York, 2003. 299-346. |