政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/111814
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113324/144300 (79%)
造訪人次 : 51113158      線上人數 : 899
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/111814


    題名: 建立臺灣地區半動態基準之水平速度場與變形模型研究
    The Study of Establishing Horizontal Velocity and Deformation Model of Semi-Dynamic Datum in Taiwan Area
    作者: 熊育賢
    Hsiung, Yu Hsien
    貢獻者: 甯方璽
    熊育賢
    Hsiung, Yu Hsien
    關鍵詞: CORS
    GNSS
    板塊運動
    速度場
    變形模型
    CORS
    GNSS
    Plate motion
    Velocity field
    Deformation model
    日期: 2017
    上傳時間: 2017-08-10 10:05:36 (UTC+8)
    摘要: 國家坐標系統是各項測量作業的基礎,而大地基準的選擇及建立更是會直接影響最後的測量成果,進一步的影響各項國家建設、民生工業以及人民的土地財產等權益。板塊運動之中尤其是非線性的板塊運動更是會改變坐標框架中參考站的相對位置,隨著時間的推移進而導致框架的幾何精度下降。而臺灣地處歐亞板塊及菲律賓海板塊的交界處,頻繁的板塊運動會造成地震、火山以及其他的自然災害,且臺灣各個區域也會因為板塊間的非線性運動而往不同的方向旋轉、位移。目前臺灣使用的坐標系統為TWD97 (Taiwan Datum 97 ),是建立於一個固定的線性框架ITRF94(The International Terrestrial Reference Frame 94)下之靜態基準,因此並不能精確的表達臺灣地區複雜的地殼變動情形,臺灣需要進行大地基準的革新以解決坐標框架變形之問題,即是在原有的靜態基準加上速度場與變形模型來改正因地殼運動造成之坐標偏移。本研究利用 2005 年至 2015 年間之臺灣地區連續運行參考站 GPS 觀測資料計算臺灣地區水平速度場情形,並參考日本、紐西蘭等國之速度模型建立方式,以內插、曲面擬合、局部加權回歸散點平滑等方法建立臺灣地區水平速度與變形模型。而臺灣地區參考站坐標解算之水平精度為 2mm-3mm、高程精度為 6mm-10mm,而速度場之年度平均標準差在 N 軸為 3.81mm,E 軸為 5.18mm。水平速度場模型方面以內插法中的線性及三次樣條內插法建立之模型有最好的精度,另外透過變形模型可以有效將地震之同震位移對坐標預測之影響消除,使速度模型之使用年限得以延長。
    National coordinate system is the foundation of surveying engineering, the establishment and the selection of geodetic datum would directly impact the accuracy of final result. Plate motion will cause earthquakes, volcanic eruptions and other natural disasters. Plate motion especially non-linear motion can also change the relationship between stations in the reference frame. Therefore, a rational and reliable reference frame is needed to ensure the Euclidean integrity quality. Taiwan is located along the bounding of the Eurasian and the Philippine plate, and is therefore a region of non-rigid motion and therefore will shift and rotate in different directions due to the changing stress field. Taiwan’s current coordinate system TWD97 is built by a fixed single term linear model ITRF94. It is not able to precisely model the non-linear motion of the crustal in the Taiwan region. Therefore, Taiwan needs velocity and deformation model to correct the distortion which caused by the crustal motion. This study used 11 years of Taiwan CORS GPS data to investigate the horizontal velocity field in Taiwan and established the horizontal velocity and deformation model by curve fitting, interpolation and LOWESS method. The horizontal coordinate accuracy of the stations is about 2mm-3mm, the vertical accuracy is about 6mm-10mm, and the average standard deviation of velocity field is 3.81mm in N axis, 5.18mm in E axis. As for velocity model, linear and cubic spline interpolations have better model accuracy. In addition, the deformation model can effectively eliminate the influence of coseismic deformation, so that the velocity model will not lose its utility.
    參考文獻: 一、 中文參考文獻

    內政部地政司衛星測量中心,2016, 「國家坐標系統之訂定」。
    內政部國土測繪中心,2012,「大地基準及一九九七坐標系統 2010 年成果」。
    內政部國土測繪中心,2013,「102年度建置現代化TWD97國家坐標系統變位模式」。
    內政部國土測繪中心,2016,「105年度精進現代化TWD97國家坐標系統變位模式」。
    孔冠傑, 2013,「臺灣西南部動態坐標系統之建立」,國立成功大學測量及空間資訊研究所碩士論文:台南。
    王亞饕、董蘭芳、 倪奎, 2007, 「基於 Biharmonic 樣條插植的圖像漸變算法及實現」,『 中國圖像圖形學報』, 12(12): 2189-2194。
    邱元宏,2016,「時變基準於臺灣基本測量與地籍測量影響探討」,國立交通大學土木工程學系博士論文:新竹。
    郭徐伸,2014,「建立臺灣半動態基準之水平速度模型」,測量及空間資訊研究所碩士論文:台南。
    郭隆晨,2000,「高精度 GPS 衛星測量在地殼變形觀測之研究」,國立交通大學土木工程學系博士論文:新竹。
    陳俊勇,2004,「大地基準的現代化和衛星大地測量新成果」,『地球科學進展』,19(1):12-19。
    蔡旻倩,2013,「臺灣西南部地殼變形與地震活動相關性研究」,國立中央大學地球科學學系博士論文:桃園。

    二、 外文參考文獻

    Altamimi, Z., Collilieux, X., and Métivier, L., 2011,“ ITRF2008: an improved solution of the international terrestrial reference frame.”, Journal of Geodesy ,85(8): 457-473.
    Altamimi, Z., Sillard, P., and Boucher, C., 2002,“ ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications.”Journal of Geophysical Research: Solid Earth, 107(B10).
    Bird, P., 2003,“An updated digital model of plate boundaries”,Geochemistry, Geophysics, Geosystems , 4(3).
    Blewitt, G., 1989,“Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km.”, Journal of Geophysical Research: Solid Earth , 94(B8): 10187-10203.
    Blick, G., Crook, C., Grant, D., and Beavan, J., 2005,“Implementation of a semi-dynamic datum for New Zealand.”, pp. 38-43 in A Window on the Future of Geodesy:, Springer, Berlin:Heidelberg
    Bock, Y., Gourevitch, S., Counselman, C., King, R., and Abbot, R., 1986, “Interferometric analysis of GPS phase observations.”,Manuscripta geodaetica , 11: 282-288.
    Boehm, J., Heinkelmann, R., and Schuh, H., 2007,“Short Note: A global model of pressure and temperature for geodetic applications.”, Journal of Geodesy, 81: 679-683.
    Bookstein, F., 1989,“Principal warps: Thin-plate splines and the decomposition of deformations.”,IEEE Transactions on pattern analysis and machine intelligence, 11(6): 567-585.
    Bourne, S.J., England, P.C., and Parsons, B., 1998,“The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults”, Nature, 391(6668):655-659.
    Casula, G., 2015,“GPS Data Processing of Five Years of More Than 300 Permanent Station Archive with the Distributed Sessions Approach in Italian Peninsula”, Paper presented at the 1st International Electronic Conference on Remote Sensing, Aristotle University of Thessaloniki, Greece,June 22-July 5.
    Ching, K. E., and Chen, K. H., 2015, “Tectonic effect for establishing a semi-dynamic datum in Southwest Taiwan”, Earth, Planets and Space, 67(1):1-14.
    Chiu, Y. H., and Shih, P. T. Y., 2014, “National Datum Uncertainty due to Reference Frame Tranformation : Case Study for the Geodetic Datum of Taiwan”, Journal of Surveying Engineering , 140(3):05014002.
    Chlieh, M., De Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J., and Feigl, K.L., 2004,“Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. ”,Geophysical Journal International , 158(2):695-711.
    Cleveland, W. S., 1979,“Robust locally weighted regression and smoothing scatterplots.”, Journal of the American statistical association , 74(368):829-836.
    Dong, D., 1993, The horizontal velocity field in southern California from a combination of terrestrial and space-geodetic data. ,Unpublished doctoral dissertation, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Massachusetts.
    Dong, D., Herring, T. A., and King, R. W., 1998,“Estimating regional deformation from a combination of space and terrestrial geodetic data.”, Journal of Geodesy , 72:200-214.
    Dong, D., Bock, Y., 1989,“Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California.”,Journal of Geophysical Research: Solid Earth , 94(B4):3949-3966.
    Dubbini, M., Cianfarra, P., Casula, G., Capra, A., and Salvini, F., 2010, “Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting.”,JOURNAL OF GEOPHYSICAL RESEARCH, 115,B12421.
    Grant, D.B., 1995,“ A dynamic datum for a dynamic cadastre.”, Australian surveyor, 40(4): 22-28.
    Grant, D.B., Blick, G.H., Pearse, M.B., Beavan, R.J., and Morgan, P.J., 1999, “ The development and implementation of New Zealand Geodetic Datum 2000.”pp 18-30 in IUGG99 General Assembly : Birmingham UK.
    Grant, D., and Blick, G., 1998,“A new geocentric datum for New Zealand.”, NZ Surv , 288: 40-42.
    Han, J. Y., Yu, S. W., and B. H. W. van Gelder,2011, “Time-variant reference frame transformations in a deforming area”, AustrSurvey Review, 43(321):282-295
    Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson, J. M., and Rocken, C., 2003,“Improvement of the analysis strategy of GEONET.”, Bulletin of the Geographical Survey Institute , 49:11-37.
    Hatanaka, Y., Tobita, M., Kuroishi, Y., and Imakiire, T., 2007,“Efficient Maintenance of the Japanese Geodetic Datum 2000 Using Crustal Deformation Models–PatchJGD & Semi-Dynamic Datum.”, Bulletin of the Geographical Survey Institute , 54:49-59.
    Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C., 2015a, GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program. , Cambridge:MIT Press.
    Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C., 2015b, GAMIT Reference Manual, GPS Analysis at MIT. , Cambridge:MIT Press.
    Herring, T.A., King, R.W., and McClusky, S.C., 2010, Introduction to Gamit/Globk ., Cambridge:MIT Press.
    Jordan, A., Denys, P., and Blick, G., 2007,“Implementing localised deformation models into a semi-dynamic datum.”, pp. 631-637 in Dynamic Planet., edited by Paul T., Berlin:Springer.
    McCaffrey, R., 1995, DEFNODE users’ guide. , NewYork:Rensselaer Polytechnic Institute.
    McCaffrey, R., Qamar, A., King, R., Wells, R., Khazaradze, G., Williams, C., Stevens, C., Vollick, J., and Zwick, P., 2007, “Fault locking, block rotation and crustal deformation in the Pacific Northwest.”,Geophysical Journal International , 169(3):1315-1340.
    McCarthy, D., and Petit, G., 2004, IERS conventions (2003): DTIC Document.
    Morgan, J.G., 1987, “The north American datum of 1983.”,The Leading Edge, 6(1):27-33.
    Murakami, M., and Ogi, S., 1999, “Realization of the Japanese Geodetic Datum 2000 (JGD2000).”,Bull. Geogr. Surv. Inst., Vol. 45:1-10.
    Nur, A., and Mavko, G., 1974,“Postseismic viscoelastic rebound.”,Science, 183(4121):204-206.
    Okada, Y., 1985,“Surface deformation due to shear and tensile faults in a half-space.”, Bulletin of the seismological society of America, 75(4):1135-1154.
    Pearse, M. B., 1998, “A modern geodetic reference system for New Zealand”, UNISURV S ,(Vol. 52).
    Pearson, C., McCaffrey, R., Elliott, J. L., & Snay, R., 2009, “HTDP 3.0: Software for coping with the coordinate changes associated with crustal motion. ”, Journal of Surveying Engineering , 136(2): 80-90.
    Pearson, C., and Snay, R., 2013, “Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. ” ,GPS solutions, 17(1):1-15.
    Petit, G., and Luzum, B., 2010, IERS conventions (2010): DTIC Document.
    Savage, J.C., 1980, “ Dislocations in seismology. ”, Dislocations in solids, 3: 251-339.
    Schaffrin, B., and Bock, Y., 1988, “A unified scheme for processing GPS dual-band phase observations. ”, Bulletin Geodesique, 62(2): 142-160.
    Schwarz, C. R., and Wade, E. B., 1990, “The North American datum of 1983: Project methodology and execution. ”, Journal of Geodesy, 64(1):28-62.
    Sillard, P., and Boucher, C., 2001, “A review of algebraic constraints in terrestrial reference frame datum definition. ”,Journal of Geodesy, 75(2-3): 63-73.
    Snay, R. A., 1999, “ Using the HTDP software to transform spatial coordinates across time and between reference frames. ”, Surveying and Land Information Systems, 59(1):15-25.
    Snay, R. A, & Soler, T., 2000, “ Modern terrestrial reference systems, Part 2: The evolution of NAD 83. ”, Professional Surveyor, 20(2): 1-2.
    Teng, L. S., 1990, “Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan.”, Tectonophysics, 183(1): 57-76.
    Thatcher, W., 1979, “Systematic inversion of geodetic data in central California. ”, Journal of Geophysical Research: Solid Earth, 84(B5): 2283-2295.
    Thatcher, W., 1983, “Nonlinear Strain Buildup and the Earthquake Cycle. ” J. geophys. Res, 88: 5893-5902.
    Tregoning, P., and Jackson, R., 1999, “The need for dynamic datums.”Geomatics Research Australasia, 87-102.
    Tse, S.T., and Rice, J. R., 1986, “ Crustal earthquake instability in relation to the depth variation of frictional slip properties. ”, J. geophys. Res, 91(9): 452-459,472.
    Tsuji, H., 2005, “Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI. ”,Bulletin of the Geographical Survey Institute, 52.
    Walcott, R.I., 1984, “An introduction to the recent crustal movements of New Zealand. ”, Royal Society of New Zealand
    Yu, S.B., Chen, H.Y. , and Kuo, L.C., 1997, “Velocity field of GPS stations in the Taiwan area. ” Tectonophysics , 274: 41-59.
    Yu, S.B., and Kuo, L.C., 2001, “Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. ” Tectonophysics, 333: 199-217.

    三、 網頁參考文獻

    IERS. (2016). International Earth Rotation and Reference Systems Service. Retrieved December 10,2016 from IERS on the World Wide Web: https://www.iers.org/IERS/EN/Home/home_node.html
    描述: 碩士
    國立政治大學
    地政學系
    104257027
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104257027
    資料類型: thesis
    顯示於類別:[地政學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    702701.pdf6566KbAdobe PDF2167檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋