Reference: | Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467. Alexius, A. (2001). Uncovered interest parity revisited. Review of International Economics, 9(3), 505-517. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., & Kautz, J. (2016). Reinforcement learning through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256. Barzdins, G., Renals, S., & Gosko, D. (2016). Character-Level Neural Translation for Multilingual Media Monitoring in the SUMMA Project. arXiv preprint arXiv:1604.01221. Basu, S., & Meckesheimer, M. (2007). Automatic outlier detection for time series: an application to sensor data. Knowledge and Information Systems, 11(2), 137-154. Bekaert, G., & Hodrick, R. J. (1993). On biases in the measurement of foreign exchange risk premiums. Journal of International Money and Finance, 12(2), 115-138. Bernardo, A., & Ledoit, O. (1999). Approximate arbitrage. Finance. Retrieved from http://www.anderson.ucla.edu/documents/areas/fac/finance/18-99.pdf Bilson, J. F. O. (2013). Adventures in the Carry Trade. Retrieved from http://www.cmegroup.com/education/files/bilson-adventures-in-the-carry-trade.pdf Brunnermeier, M. K., Nagel, S., & Pedersen, L. H. (2009). Carry trades and currency crashes. In Daron Acemoglu, Kenneth Rogoff, Michael Woodford (Eds.), NBER Macroeconomics Annual 2008 (Vol. 3), (pp. 313-347). Chicago: University of Chicago Press. Burnside, C. (2011). The cross-section of foreign currency risk premia and consumption growth risk: comment. The American Economic Review, 101(7), 3456-3476. Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S. (2006). The returns to currency speculation. NBER Working Papers, 12489. Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S., (2011). Do peso problems explain the returns to the carry trade? The Review of Financial Studies, 24(3), 853-891. Clinton, K. (1998). Transactions costs and covered interest arbitrage: theory and evidence. Journal of Political Economy, 96(2), 358-370. Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. Neural networks, IEEE Transactions on, 22(10), 1517-1531. Fama, E. F. (1984). Forward and spot exchange rates. Journal of Monetary Economics, 14(3), 319-338. Frankel, J. A. (1980). Tests of rational expectations in the forward exchange market. Southern Economic Journal, 46(4), 1083-1101. Frenkel, J. A., & Levich, R. M., (1975). Covered interest rate arbitrage: unexploited profits? Journal of Political Economy, 83(2), 325-338. Froot, K. A., & Ramadorai, T. (2008). Institutional portfolio flows and international investments. Review of Financial Studies, 21(2), 937-971. Froot, K. A., & Thaler, R. H. (1990). Foreign exchange. The Journal of Economic Perspectives, 4(3), 179-192. Fujii, E., & Chinn, M. D. (2000). Fin de Siècle real interest parity. NBER Working Papers, 7880. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4), 44. Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126. Hodrick, R. J. (1991) the Empirical Evidence on the Efficiency of Forward and Futures Foreign Exchange Markets, 2nd. edn. London, UK: Routledge. Huang, S. Y., Lin, J. W., & Tsaih, R. H. (2016, July). Outlier detection in the concept drifting environment. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 31-37). IEEE. Huang, S. Y., Yu, F., Tsaih, R. H., & Huang, Y. (2014). Resistant learning on the envelope bulk for identifying anomalous patterns. In Neural networks (IJCNN), 2014 International Joint Conference on, 3303-3310. James, J., Marsh, I. W., & Sarno, L. (2012). Handbook of Exchange Rates. New Jersey : Wiley. Jordà, Ò., & Taylor, A. M. (2012). The carry trade and fundamentals: Nothing to fear but FEER itself. Journal of International Economics, 88, 74-90. Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural networks. Journal of applied econometrics, 10(4), 347-364. Kurzweil, R. (2005). The singularity is near: When humans transcend biology. Penguin. Lin, C. W. (2015). A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment (Master`s thesis). Retrieved from http://thesis.lib.nccu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dallcdr&s=id=%22G0102356002%22.&searchmode=basic Lustig, H., & Verdelhan, A. (2007). The cross section of foreign currency risk premia and consumption growth risk. The American Economic Review, 97(1), 89-117. Masud, M. M., Chen, Q., Khan, L., Aggarwal, C., Gao, J., Han, J., & Thuraisingham, B. (2010). Addressing concept-evolution in concept-drifting data streams. In Data Mining (ICDM), 2010 IEEE 10th International Conference on. 929-934. Masud, M. M., Gao, J., Khan, L., Han, J., & Thuraisingham, B. (2011). Classification and novel class detection in concept-drifting data streams under time constraints. Knowledge and Data Engineering, IEEE Transactions on, 23(6), 859-874. McCorduck, P. (2004). Machines Who Think, Natick, MA: A. K. Peters, Ltd. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133. Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies. Journal of International Economics, 14(1-2), 3-24. Obstfeld, M., & Taylor, A. M. (2004). Global Capital Markets: Integration, Crisis, and Growth. Cambridge University Press, Cambridge. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899. Plantin, G., & Shin, H. S. (2006). Carry trades and speculative dynamics. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=898412 Poterba, J. M., & Summers, L. H., 1986. The persistence of volatility and stock market fluctuations. The American Economic Review, 76(5), 1142-1151. Rousseeuw, P. J., & Van Driessen, K. (2006). Computing LTS regression for large data sets. Data mining and knowledge discovery, 12(1), 29-45. Sinclair, P. J. N. (2005). How policy rates affect output, prices, and labour, open economy issues, and inflation and disinflation. In Mahadeva, Lavan, Sinclair, Peter (Eds.), How Monetary Policy Works (pp. 53-81). London: Routledge. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9). Tolvi, J. U. S. S. I. (2002). Outliers and Predictability in Monthly Stock Market Index Returns. Liiketaloudellinen aikakauskirja, 369-380. Triennial Central Bank Survey. (2016). Triennial Central Bank Survey Foreign exchange turnover in April 2016. Retrieved from http://www.bis.org/publ/rpfx16fx.pdf Trippi, R. R., & Turban, E. (1992). Neural networks in finance and investing: Using artificial intelligence to improve real world performance. McGraw-Hill, Inc. Tsaih, R. H., & Cheng, T. C. (2009). A resistant learning procedure for coping with outliers. Annals of Mathematics and Artificial Intelligence, 57(2), 161-180. Tsaih, R., Hsu, Y., & Lai, C. C. (1998). Forecasting S&P 500 stock index futures with a hybrid AI system. Decision Support Systems, 23(2), 161-174. Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, 106(2). Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015, April). Large-scale cluster management at Google with Borg. In Proceedings of the Tenth European Conference on Computer Systems (p. 18). ACM. Walczak, S. (2001). An empirical analysis of data requirements for financial forecasting with neural networks. Journal of management information systems, 17(4), 203-222. Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1), 69-101. |