政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/111595
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 53007110      在线人数 : 875
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/111595


    题名: 用消費者行為改進銷售預測
    Improved sales forecasting with consumer behavior
    作者: 馬克斯
    zur Muehlen, Maximilian
    贡献者: 林左裕
    Lin, Calvin
    馬克斯
    zur Muehlen, Maximilian
    关键词: ADL
    銷售預測
    Google趨勢
    消費者行為
    ADL
    Sales forecasting
    Google trends
    Consumer behavior
    日期: 2017
    上传时间: 2017-07-31 11:36:20 (UTC+8)
    摘要: 本篇目的---對於精實企業來說資訊預測的能力扮演舉足輕重的角色,如汽車製造商須要有可靠的資訊來完成各項重要的決策以保持企業競爭力,市場以及消費者的活動提供了新型態的資料可以透過現代科技來處理分,本篇論文希望從2008年至2016年整合的Google 搜尋趨勢資料來建構預測模型。
    設計/方法論/方法---基於五階段消費者購買行為,此研究檢視整個過程中合適的Google關鍵字,並利用滯後變數模型和Google搜尋趨勢來驗證銷售和各種經濟變數之間的關係,預測的銷售會更進一步檢視其正確性。
    結論與發現---用來檢視預測正確性的兩種最常見的方法指出Google搜尋趨勢可以作為有效的銷售預測依據,研究發現總體經濟變數和時間序列在預測上相較於Google搜尋趨勢在短期相對有效性小。
    研究貢獻---僅有少許在汽車銷量預測上的研究將Google搜尋趨勢和合適的時間滯留列入考量,本篇研究提供消費者行為和銷售資料關係的新視角。
    Purpose – The role of forecasting in a lean enterprise is immense. It is crucial for car manufacturers to have reliable information about the future to make important decisions and stay competitive. Developing markets and consumers provide new types of data that demand modern approaches to be handled. This paper aims to create reliable forecasting models through integration of Google Trends data from 2008 to 2016.
    Design/methodology/approach – Building on the 5-stage-model of consumer buying behavior, the study identifies suitable Google keywords for this process. Autoregressive distributed lag models are used to examine the relationship between sales and macro-economic variables as well as Google Trends. Predicted sales are used to test for accuracy.
    Findings – Two most common evaluation measurements for forecasting accuracy suggest the use of Google Trends, as predictors for future sales, is outstanding. The finding concludes that macro-economic variables and seasonality are not as valuable as Google Trends in short-term, up to one year, forecasting.
    Value – Only little research on car sales forecasting takes Google Trends and their appropriate time lags into account. This analysis provides new insights into the linkage of consumer behavior and sales data.
    參考文獻: Carrière-Swallow, Y., & Labbé, F. (2010). Nowcasting with Google Trends in an Emerging Market. Central Bank of Chile.
    Choi, H., & Varian, H. (2009). Predicting the Present with Google Trends. Google Inc.
    Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, Vol. 88, No. 1, 2-9.
    Crain Communication Inc. (2013). Top Suppliers. Automotive News.
    Dharmani, S., Anand, D., & Dr. Demirci, M. (2013). Shifting Gear - Capacity management in the automotive industry. Ernst & Young Global Limited.
    Fantazzini, D., & Toktamysova, Z. (2015). Forecasting German Car Sales Using Google Data and Multivariate Models. Internal Journal of Production Economics, Vol. 170, Part A, 97-135.
    Goel, S. H. (2010). Predicting consumer behavior with Web search. Proceedings of the National Academy of Sciences, Vol. 107, No. 41, 17486 – 17490.
    Gredenhof, M., & Karlsson, S. (1997). Lag-length Selection in VAR-models Using Equal and Unequal lag-length procedures. 177.
    Green, K. C., & Armstrong, J. S. (2015). Simple vs. complex forecasting: The evidence. Journal of Business Research, Vol. 68, 1678–1685.
    Hill, C. R., Griffiths, W. E., & Lim, G. C. (2010). Principles of Econometrics. John Wiley & Sons, Incorporated.
    Hofstede, G. (n.d.). Cultural Dimensions. (ITIM International) Retrieved March 12, 2017, from https://geert-hofstede.com/
    Hülsmann, M., Borscheid, D., Friedrich, C. M., & Reith, D. (2012). General Sales Forecast Models for Automobile Markets and their Analysis. Vol. 5, No. 2 (2012) 65-86.
    Karlsson, E., & Annie, R. (2014). Development of a Sales and Operation Planning Process. Göteburg, Sweden.
    Kinski, A. (2016). Google Trends as Complementary Tool for New Car Sales Forecasting: A Cross-Country Comparison along the Customer Journey. University of Twente.
    Kotler, P., & Keller, K. L. (2016). A Framework for Marketing Management. Pearson Education Limited.
    Marklines. (n.d.). Automotive Industry Portal Marklines - Vehicle Sales. (MarkLines Co., Ltd.) Retrieved February 17, 2017, from Automotive Industry Portal Marklines: https://www.marklines.com/en/vehicle_sales/index
    Pan. B., W. D. (2012). Forecasting hotel room demand using search engine data. Journal of Hospitality and Tourism Technology, Vol. 3, No. 3, 196-210.
    Return On Now. (2015). Search Engine Market Share. Retrieved May 27, 2017, from Returnonnow: http://returnonnow.com/internet-marketing-resources/2015-search-engine-market-share-by-country/
    Rieg, R. (2010). Do Forecasts Improve over Time? A case study of the accuracy of sales forecasting at a German car manufacturer. IJAIM, Vol.18, No.3, 222-236.
    Rogers, S. (2016, July 2). Retrieved May 22, 2017, from https://medium.com/google-news-lab/what-is-google-trends-data-and-what-does-it-mean-b48f07342ee8
    Schmidt, T., & Simeon, V. (2009). Forecasting Private Consumption: Survey-based Indicators vs. Google Trends. Journal of Forecasting, Vol. 30, No. 6, Ruhr economic papers, No. 155, 565-578.
    Shende, V. (2014). Analysis of Research in Consumer Behavior of Automobile Passenger Car Customer. International Journal of Scientific and Research Publications, Vol. 4, No. 2, 1-8.
    Swanson, D. A., Jeff, T., & T.M., B. (2011). MAPE-R: A rescaled measure of accuracy for cross-sectional forecasts. Springer.
    The World Bank. (n.d.). The World Bank - Global Economic Monitor. (The World Bank Group) Retrieved February 18, 2017, from The World Bank IBRD IDA: http://data.worldbank.org/data-catalog/global-economic-monitor
    The World Bank. (n.d.). World DataBank. (The World Bank Group) Retrieved February 23, 2017, from The World Bank IBRD IDA: http://databank.worldbank.org/data/home.aspx
    Wharton. (2011, September 15). Wharton Magazine. Retrieved April 25, 2017, from http://whartonmagazine.com/blogs/importance-of-simple-forecasting-methods/
    Wikipedia. (2017). Augmented Dickey Fuller Test. Retrieved April 10, 2017, from Wikipedia: https://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test
    zur Muehlen, M. (2016). Automotive Industry Thailand.
    描述: 碩士
    國立政治大學
    應用經濟與社會發展英語碩士學位學程(IMES)
    104266016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104266016
    数据类型: thesis
    显示于类别:[應用經濟與社會發展英語碩士學位學程 (IMES)] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    601601.pdf3728KbAdobe PDF2273检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈