English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113313/144292 (79%)
Visitors : 50946028      Online Users : 848
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/111590


    Title: 基於內隱資料之協同過濾推薦系統研究與實作
    Research and application for collaborative filtering recommendation system using implicit datasets
    Authors: 張遠耀
    Chang, Yuan Yao
    Contributors: 洪叔民
    Horng, Shwu Min
    張遠耀
    Chang, Yuan Yao
    Keywords: 推薦系統
    內隱資料
    協同過濾
    潛在因子
    矩陣分解
    Date: 2017
    Issue Date: 2017-07-31 11:35:33 (UTC+8)
    Abstract: 近年來電子商務蓬勃發展,嚴重侵蝕實體通路業績,因此線下服務提供者更應善用資料科學技術,找出顧客未被滿足之需求,進而提供優質服務,其中脫穎而出的關鍵非推薦系統莫屬。
    本研究以運用計算產品相似程度的「項目導向協同過濾」和計算使用者與商品蘊含特徵的「潛在因子」兩大類「協同過濾」推薦方法為核心,藉由實體零售通路累積的顧客消費紀錄,驗證「協同過濾」方法較傳統熱門商品推薦機制更符合消費者偏好,且「協同過濾」方法能達到完全個人化推薦之目標。
    本研究使用的實體零售通路消費紀錄源於顧客真實購物行為,收集成本低,且數據量龐大,然而此類資料無法直接傳達顧客對於商品的喜好與滿足程度,因此被稱之為「內隱資料」,針對內隱資料處理上,本研究選擇以消費次數取代金額,提出短期重複行為計算閾值概念,以時間修正權重處理可能的偏好轉變與習慣性消費。
    模型評估方面,透過強調推薦順序的「平均排名百分比」作為指標,利用傳統熱門商品推薦為基準,比較「項目導向協同過濾」和「潛在因子」兩大類「協同過濾」方法推薦品質的優劣,本研究顯示兩大類「協同過濾」方法達到的推薦品質皆優於熱門商品推薦,且前者遞交的推薦清單為完全個人化,運用本研究發展的推薦系統,將其導入與應用,讓線下服務提供者在與每位顧客接觸的關鍵時刻,能在洞悉對方需求的利基上,提供令顧客滿意的商品與服務,創造獨特且難以模仿的競爭優勢。
    Reference: [1] How retailers can keep up with consumers. Retrieved October 2013. from: http://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
    [2] Netflix Prize. from: http://www.netflixprize.com/community/forum.html
    [3] YouTube statistics. from: https://www.youtube.com/yt/press/statistics.html
    [4] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., & Sampath, D. (2010). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems. 293–296.
    [5] Facebook newsroom, company info, statistics. from: https://www.youtube.com/yt/press/zh-TW/statistics
    [6] Recommending items to more than a billion people. Retrieved June 3 2015. from: https://code.facebook.com/posts/861999383875667/recommending-items-to-morm-than-a-billion-people/
    [7] Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM. 35(12). 61-70.
    [8] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM. 40(3). 77-87.
    [9] Harper, F. M., & Konstan, J. A. (2016). The MovieLens datasets: history and context. ACM Transactions on Interactive Intelligent Systems (TiiS). 5(4). Article No.: 19. 1-20.
    [10] Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet computing. 7(1). 76-80.
    [11] Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. 191-198.
    [12] Bell, R. M., & Koren, Y. (2007). Lessons from the Netflix prize challenge. ACM Sigkdd Explorations Newsletter. 9(2). 75-79.
    [13] Listen to Pandora, and it listens back. Retrieved January 4 2014. from: https://www.nytimes.com/2014/01/05/technology/pandora-mines-users-data-to-better-target-ads.html?_r=0
    [14] Ali, K., & Van Stam, W. (2004). TiVo: making show recommendations using a distributed collaborative filtering architecture. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 394-401.
    [15] Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review. 13(5-6). 393-408.
    [16] Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. The adaptive web. 325-341.
    [17] Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning.
    [18] Tata, S., & Patel, J. M. (2007). Estimating the selectivity of TF-IDF based cosine similarity predicates. ACM Sigmod Record. 36(2). 7-12.
    [19] Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of the sixth New Zealand computer science research student conference. 49-56.
    [20] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS). 22(1). 5-53.
    [21] Papagelis, M., & Plexousakis, D. (2005). Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence. 18(7). 781-789.
    [22] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering. 17(6). 734-749.
    [23] Wang, J., De Vries, A. P., & Reinders, M. J. (2006). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. 501-508.
    [24] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web. 285-295.
    [25] Yildirim, H., & Krishnamoorthy, M. S. (2008). A random walk method for alleviating the sparsity problem in collaborative filtering. In Proceedings of the 2008 ACM conference on Recommender systems. 131-138.
    [26] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer. 42(8). 30-37.
    [27] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality reduction in recommender system-a case study. Minnesota Univ Minneapolis Dept of Computer Science.
    [28] Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD cup and workshop. Vol. 2007. 5-8.
    [29] Netflix Update: Try This at Home. Retrieved December 2006. from: http://sifter.org/~simon/journal/20061211.html
    [30] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. 452-461.
    [31] Bennett, J., & Lanning, S. (2007). The Netflix Prize. In Proceedings of KDD cup and workshop. Vol. 2007. 3-6.
    [32] Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM`08. Eighth IEEE International Conference. 263-272.
    [33] Surprise (Python scikit for recommender systems), Similarities Module Introduction. from: http://surprise.readthedocs.io/en/latest/similarities.html
    [34] Koren, Y. (2010). Factor in the neighbors: scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data. 4(1). Article No.: 1. 1-24.
    [35] Surprise (Python scikit for recommender systems), Matrix Factorization-based algorithms. from: http://surprise.readthedocs.io/en/latest/matrix_factorization.html
    [36] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce. 158-167.
    [37] What do Recommender Systems experts think of the "Estimating the causal impact of recommendation systems from observational data" paper ? Answer by Xavier Amatriain. from: https://www.quora.com/What-do-Recommender-
    Systems-experts-think-of-the-Estimating-the-causal-impact-of-recommendation-systems-from-observational-data-paper
    [38] Baltrunas, L., & Amatriain, X. (2009). Towards time-dependant recommendation based on implicit feedback. In Workshop on context-aware recommender systems (CARS’09).
    [39] Gomez-Uribe, C. A., & Hunt, N. (2016). The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS). 6(4). Article No.: 13. 1-19.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    104363050
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1043630501
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback