English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50812101      Online Users : 641
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110854


    Title: 以關聯結構條件風險值模型解構臺灣證券市場系統風險
    Application of copula CoVaR models in systemic risk of Taiwan security market
    Authors: 陳紹傑
    Chen, Shao Jie
    Contributors: 徐士勛
    陳紹傑
    Chen, Shao Jie
    Keywords: 關聯結構
    條件風險值
    系統風險
    Copula
    CoVaR
    Systemic risk
    Date: 2017
    Issue Date: 2017-07-11 12:07:16 (UTC+8)
    Abstract: 本研究以關連結構模型分析 2007 年金融海嘯前後臺灣證券市場與國際主要市場之關係,進而由條件風險值估算當其他市場面臨風險事件下,臺灣證券市場所面臨之潛在系統風險。實證結果顯示,各市場條件風險值估值均低於臺灣證券市場自身在險值水準,顯示如由在險值衡量該風險仍有未盡妥善之處,反應條件風險值與國際市場資訊對於臺灣市場之系統風險衡量有相當之價值。此外,我們亦得以檢視臺灣證券市場是否受不同市場之系統風險影響,結果指出金融海嘯後各市場影響漸趨一致。
    In this paper, we first apply copula model to capture the relationship be-tween Taiwan securities market and major international markets across the financial tsunami in 2007. The systemic risk for Taiwan’s securities market is then measured by CoVaR while other markets facing risk events. The main results show that the CoVaR of each market is lower than the VaR of Taiwan securities market, which means there is still room for improvement in the measurement of systemic risk by VaR. They point out that CoVaR and the information of international market are valuable in measuring the systemic risk of Taiwan securities market. Moreover, we can also check the systemic impact of major international markets on Taiwan securities mar-ket. The results indicate that the impact of others market on Taiwan tend to be identical after the financial tsunami.
    Reference: Aas, K. (2016). Pair-copula constructions for financial applications: A review. Econometrics, 4(4), 43.
    Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American statistical Association, 97(457), 284-292.
    Adrian, T., and Brunnermeier, M. K. (2011). CoVaR (No. w17454). National Bureau of Economic Research.
    Algieri, B., and Leccadito, A. (2017). Assessing contagion risk from energy and non-energy commodity markets. Energy Economics, 62, 312-322.
    Bartram, S. M., Taylor, S. J., and Wang, Y. H. (2007). The Euro and European financial market dependence. Journal of Banking & Finance, 31(5), 1461-1481.
    Bedford, T., and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial intelligence, 32(1), 245-268.
    Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons : New Jersey.
    Embrechts, P., McNeil, A., and Straumann, D. (1998). Correlation and dependency in risk management: properties and pitfails. Working paper.
    Engle, R. F., and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22(4), 367-381.
    Girardi, G., and Ergun, A. T. (2013). Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking & Finance, 37(8), 3169-3180.
    Hansen, L. P. (2012). Challenges in identifying and measuring systemic risk. (No. w18505). National Bureau of Economic Research.
    Joe, H. (1997). Multivariate models and multivariate dependence concepts. Chapman & Hall : London.
    Joe, H., and Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical report,
    Jondeau, E., and Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international stock market application. Journal of international money and finance, 25(5), 827-853.
    Karimalis, E. N., and Nomikos, N. (2014). Measuring systemic risk in the European banking sector: A Copula CoVaR approach. Working paper.
    Koenker, R., and Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 46, 33-50.
    Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The journal of Derivatives, 3(2), 73-84.
    Liu, C. L., and Yang, H. F. (2017). Systemic risk in carry-trade portfolios. Finance Research Letters, 20, 40-46.
    Nelsen, R. B. (2006). An Introduction to Copulas. Springer-Verlag : New York.
    Patton, A. J. (2002). Applications of copula theory in financial econometrics. San Diego : University of California.
    Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International economic review, 47(2), 527-556.
    Reboredo, J. C. (2015). Is there dependence and systemic risk between oil and renewable energy stock prices?. Energy Economics, 48, 32-45.
    Reboredo, J. C., and Ugolini, A. (2015). Systemic risk in European sovereign debt markets: A CoVaR-copula approach. Journal of International Money and Finance, 51, 214-244.
    Reboredo, J. C., and Ugolini, A. (2016). Systemic risk of Spanish listed banks: a vine copula CoVaR approach. Spanish Journal of Finance and Accounting Revista Espanola de Financiacion y Contabilidad, 45(1), 1-31.
    Reboredo, J. C., and Ugolini, A. (2016). The impact of downward/upward oil price movements on metal prices. Resources Policy, 49, 129-141.
    Silvapulle, P., Fenech, J. P., Thomas, A., and Brooks, R. (2016). Determinants of sovereign bond yield spreads and contagion in the peripheral EU countries. Economic Modelling, 58, 83-92.
    Sklar, M. (1959). Fonctions de Repartition a n Dimensions et Leurs Marges. Universite Paris, 8, 229-231.
    White Jr, H. L., Kim, T. H., and Manganelli, S. (2008). Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR. ECB Working paper No. 957.
    White, H., Kim, T. H., and Manganelli, S. (2015). VAR for VaR: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1), 169-188.
    Wong, A., and Fong, T. (2010). An analysis of interconnectvity among the Asia-Pacific economies. Hong Kong Monetary Authority Working paper.
    Xu, J. J. (1996). Statistical modelling and inference for multivariate and longitudinal discrete response data (Doctoral dissertation, University of British Columbia).
    Description: 碩士
    國立政治大學
    經濟學系
    104258036
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104258036
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File SizeFormat
    803601.pdf1261KbAdobe PDF228View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback