政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/110835
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51272873      Online Users : 846
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/110835


    Title: 二階非線性微分方程解的行為
    On the behavior of solution for non-linear differential equation
    Authors: 陳盈潤
    Contributors: 李明融
    陳盈潤
    Keywords: 解的爆炸時間
    解的最大存在時間
    Emden-Fowler方程式
    Blow up time for solution
    The lift-span for solution
    Emden-Fowler equation
    Date: 2017
    Issue Date: 2017-07-11 11:56:03 (UTC+8)
    Abstract: 在這篇論文,我們考慮半線性微分方程式的初始邊界值問題之解u,的存在性,唯一性,和他的行為.
    (i) t^{-sigma}u``(t)=r_1u(t)^p+r_2u(t)^p(u`(t))^2, u(1)=u_0,u`(1)=u_1,
    其中 p>1 為常數.
    對t≥1,sigma>0,p>1 為偶數,r_1>0,r_2>0,u_0>0,u_1>0.
    我們得到以下的結果.
    1 Introduction 1
    2 Fundamental lemma 4
    2.1 Fundamental lemma 4
    3 Some Solution Representations 7
    3.1 Representation for v_s 7
    3.2 Representation for v 8
    4 Main Result 10
    4.1 Estimate for v under unboundedness of the equation(2.1.3) when sigma>0, p>1 is even 10
    5 Conclusion 16
    Bibliography 17
    Reference: [1]Meng-Rong Li On the Emden-Fowler equation u``-|u|^{p-1}u=0 Nonlinear Analysis 2006 vol.64 pp.1025-1056
    [2]Meng-Rong Li.BLOW-UP RESULTS AND ASYMPTOTIC BEHAVIOR OF THE EMDEN-FOWLER EQUATION u``= |u|^{p} Acta Math.Sci., 2007 vol.4 pp.703-734
    [3]Meng-Rong Li. ON THE EMDEN-FOWLER EQUATION u``(t)u(t)=c_1+c_2(u`(t))^2 when c_1≥0, c_2≥0 Acta Math.Sci., 2010 vol.30 4 pp.1227-1234
    [4]Meng-Rong Li.ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF THE NONLINEAR DIFFERENTIAL EQUATION t^2u" = u^nElectronic Journal of Differential Equations,2013 vol.2013 No.250 pp.1-9.
    [5]Meng-Rong Li. NONEXISTENCE OF GLOBAL SOLUTIONS OF EMDEN-FLOWER TYPE SEMILINEAR WAVE EQUATIONS WITH NON-POSITIVE ENERGY Electronic Journal of Differential Equations, 2016 vol.2016 No.93 pp.1-10.
    [6]Meng-Rong Li. BLOW-UP SOLUTIONS TO THE NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION u``(t)=u(t)^p(c_1+c_2u`(t)^q) (I) Acta Math.Sci., June 2008 vol.12 3 pp.599-621
    [7]Meng-Rong Li and Yueloong Chang.A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION FOR SOME ENTERPRISES Acta Math.Sci.,2015 vol.35 5 pp.1014-1022
    [8]Meng-Rong Li and Pai Jente. QUENCHING PROBLEM IN SOME SEMILINEAR WAVE EQUATIONS Acta Math.Sci., 2008 vol.28 3 pp.523-529
    [9]Meng-Rong Li and Tzong-Hann Shieh. Numeric treatment of contact discontinuity with multi-gases Journal of Computational and Applied Mathematics 2009 vol.2009 pp.656–673
    [10]Corey-Stevenson Powell. J.HOMER LANE AND THE INTERNAL STRUCTURE OF THE SUN JHA 1988 xix
    Description: 碩士
    國立政治大學
    應用數學系
    102751015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1027510151
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2501View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback