English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50798762      Online Users : 704
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/104628
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/104628


    Title: 一個具擴散性的SIR模型之行進波解
    Traveling wave solutions for a diffusive SIR model
    Authors: 余陳宗
    Yu, Chen Tzung
    Contributors: 符聖珍
    Fu, Sheng Chen
    余陳宗
    Yu, Chen Tzung
    Keywords: 行進波解
    擴散性
    SIR model
    traveling wave solution
    Date: 2016
    Issue Date: 2016-12-07 10:46:54 (UTC+8)
    Abstract: 本篇論文討論的是SIR模型的反應擴散方程
             s_t = d_1 s_xx − βsi/(s + i),
             i_t = d_2 i_xx + βsi/(s + i) − γi,
             r_t = d_3 r_xx + γi,
    之行進波的存在性,其中模型描述的是在一個封閉區域裡流行疾病爆發的狀態。這裡的 β 是傳播係數,γ 是治癒或移除(即死亡)速率,s 是未被傳染個體數,i 是傳染源個體數,d_1、d_2、d_3分別為其擴散之係數。
      我們將使用Schauder不動點定理(Schauder fixed point theorem)、Arzela-Ascoli定理和最大值原理(maximum principle)來證明:該系統存在最小速度為c=c*:=2√(d2( β - γ ))之行進波解。我們的結果回答了[11]裡所提出的開放式問題。
     In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model
             s_t = d_1 s_xx − βsi/(s + i),
             i_t = d_2 i_xx + βsi/(s + i) − γi,
             r_t = d_3 r_xx + γi,
    which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11].
    Reference: [1]  Shangbing Ai and Wenzhang Huang. Travelling waves for a reaction–diffusion system in population dynamics and epidemiology. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135(4):663–675, 07 2007.

    [2]  Steven R. Dunbar. Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol., 17(1):11–32, 1983.

    [3]  Steven R. Dunbar. Traveling wave solutions of diffusive Lotka-Volterra equations: a het-eroclinic connection in R4. Trans. Amer. Math. Soc., 286(2):557–594, 1984.

    [4]  Sheng-Chen Fu. The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction. Quart. Appl. Math., 72(4):649??64, 2014.

    [5]  Sheng-Chen Fu. Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl., 435(1):20–37, 2016.

    [6]  Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Math-ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e: 34002)], With a foreword by Peter Bates.

    [7]  Yuzo Hosono and Bilal Ilyas. Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlinear World, 1(3):277–290, 1994.

    [8]  Yuzo Hosono and Bilal Ilyas. Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci., 5(7):935–966, 1995.

    [9]  Wenzhang Huang. Traveling waves for a biological reaction-diffusion model. J. Dynam. Differential Equations, 16(3):745–765, 2004.

    [10] Anders Källén. Thresholds and travelling waves in an epidemic model for rabies. Nonlin-ear Anal., 8(8):851–856, 1984.

    [11] Xiang-Sheng Wang, Haiyan Wang, and Jianhong Wu. Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst., 32(9): 3303–3324, 2012.
    Description: 碩士
    國立政治大學
    應用數學系
    102751007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1027510071
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    007101.pdf321KbAdobe PDF2412View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback