政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/103980
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113393/144380 (79%)
造訪人次 : 51234018      線上人數 : 890
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/103980
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/103980


    題名: 碳排放權衍生性商品訂價與實證分析:均數復歸、隨機波動度與跳躍風險
    Derivative Pricing and Empirical Analysis in CO2 Emission Allowance: Mean Reversion, Stochastic Volatility, and Jump Risks
    作者: 陳亭甫
    Chen, Ting Fu
    貢獻者: 林士貴
    Lin, Shih Kuei
    陳亭甫
    Chen, Ting Fu
    關鍵詞: 碳排放權
    均數復歸
    隨機波動度
    跳躍風險
    共同估計
    Emission Allowance
    Mean-Reversion
    Stochastic Volatility
    Jump Risks
    Joint Estimation
    日期: 2016
    上傳時間: 2016-11-14 16:10:06 (UTC+8)
    摘要: 溫室氣體的減量已成為全球各國必須共同面對的課題,歐盟委員會為幫助其成員國達成減排目標,於 2005 年成立歐盟碳排放交易體系,使得碳排放權成為可以具體交易的商品。為了更加了解碳排放市場特性以增進風險管理績效,本研究可分為以下各個面向:第一,在財務定價模型方面,本研究同時採用過去文獻針對商品資產所使用的隨機波動度、均數復歸、價格跳躍與波動度跳躍特性,並發展粒子濾波方法與最大期望演算法作為模型參數估計方法。第二,透過Esscher轉換推導風險中立下的價格動態,並藉由傅利葉轉換的評價方法推導出各個模型所對應的期貨選擇權評價公式。第三,延續本文採用的碳權價格動態模型下,以歐洲碳排放許可憑證(EUA)為標的商品,進行歐盟碳排放交易體系在第三階段的市場實證研究。本文實證研究結果發現,均數復歸、隨機波動度以及價格與波動度相關跳躍模型,確實存在於EUA市場中,無論在現貨市場或選擇權市場都是重要的價格因素。分析EUA市場特性時,應採用同時考量現貨市場與衍生性商品市場價格的共同估計方法,才能夠完整的反映出EUA市場的價格特性。
    Reducing the emission of greenhouse gases has become a major task for countries all over the world. To help the member states achieve the reduction target, EU emissions trading system (EU ETS) is constructed by European Commission, so that the emission allowance becomes a tradable commodity. To investigate the features of the price dynamics in the carbon market and to enhance the performance of risk management, this study is constructed as follows: First, the stylized facts including mean-reversion, stochastic volatility, price jumps, and volatility jumps, which are documented in the literature on modeling dynamics of commodities, are employed to construct the pricing model. The particle filter procedure and the expectation-maximization algorithm are developed to estimate the proposed models. Second, the pricing models under the risk-neutral measure are obtained through the Esscher transform, and the analytic pricing formula for the option on futures is derived by means of Fourier transform. Third, the EU ETS in Phase III is investigated through the price of EU allowances (EUA), which is the underlying of the EU ETS. The empirical findings show the existence of the mean-reversion, stochastic volatility, and correlated jumps risks in the EUA price dynamics, and these stylized facts are crucial factors in fitting the EUA price dynamics in both spot market and option market. When analyzing the features of the EUA market, the joint estimation, which involves the information contained in both spot and derivatives markets, should be adopted to obtain the comprehensive stylized facts of the EUA price dynamics.
    參考文獻: Asselta, H. V. and T. Brewer (2010). "Addressing Competitiveness and Leakage Concerns in Climate Policy: An Analysis of Border Adjustment Measures in the US and the EU." Energy Policy 38(1): 42-51.
    Bakshi, G., C. Cao, and Z. W. Chen (1997). "Empirical Performance of Alternative Option Pricing Models." Journal of Finance 52(5): 2003-2049.
    Bakshi, G. and L. Wu (2010). "The Behavior of Risk and Market Prices of Risk over the Nasdaq Bubble Period." Management Science 56(12): 2251-2264.
    Bates, D. (1996). "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options." Review of Financial Studies 9(1): 69-107.
    Benz, E. and S. Trück (2009). "Modeling the Price Dynamics of CO2 Emission Allowances." Energy Economics 31(1): 4-15.
    Bredin, D. and C. Muckley (2011). "An Emerging Equilibrium in the EU Emissions Trading Scheme." Energy Economics 33(2): 353-362.
    Breeden, D. T. (1979). "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities." Journal of Financial Economics 7(3): 265-296.
    Broadie, M., M. Chernov, and M. Johannes (2007). "Model Specification and Risk Premia: Evidence from Futures Options." The Journal of Finance 62(3): 1453-1490.
    Brooks, C. and M. Prokopczuk (2013). "The Dynamics of Commodity Prices." Quantitative Finance 13(4): 527-542.
    Carmona, R. and J. Hinz (2011). "Risk-Neutral Models for Emission Allowance Prices and Option Valuation." Management Science 57(8): 1453-1468.
    Çetin, U. and M. Vweschuere (2009). "Pricing and Hedging in Carbon Emissions Markets." International Journal of Theoretical and Applied Finance 12(7): 949-967.
    Chang, J. R., M. W. Hung, C. F. Lee, and H. M. Lu (2007). "The Jump Behavior of Foreign Exchange Market: Analysis of Thai Baht." Review of Pacific Basin Financial Markets and Policies 10(2): 265-288.
    Chesney, M. and L. Taschini (2012). "The Endogenous Price Dynamics of Emission Allowances and an Application to CO2 Option Pricing." Applied Mathematical Finance 19(5): 447-475.
    Chevallier, J. (2009). "Carbon Futures and Macroeconomic Risk Factors: A View from the EU ETS." Energy Economics 31(4), 614-625
    Chevallier, J. (2010). "Carbon Prices during the EU ETS Phase II: Dynamics and Volume Analysis." HAL.
    Christoffersen, P., K. Jacobs, and K. Mimouni (2010). "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices." Review of Financial Studies 23(8): 3141-3189.
    Conrad, C., D. Rittler, and W. Rotfuss (2012). "Modeling and Explaining the Dynamics of European Union Allowance Prices at High-frequency." Energy Economics 34(1): 316-326.
    Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985). "A Theory of the Term Structure of Interest Rates." Econometrica 53(2): 385-408.
    Cronshaw, M. B. and J. B. Kruse (1996). "Regulated Firms in Pollution Permit Markets with Banking." Journal of Regulatory Economics 9(2): 179-189.
    Daskalakis, G., D. Psychoyios, and R. N. Markellos (2009). "Modeling CO2 Emission Allowance Prices and Derivatives: Evidence from the European Trading Scheme." Journal of Banking & Finance 33(7): 1230-1241.
    De Perthuis, C. and R. Trotignon (2014). "Governance of CO2 Markets: Lessons from the EU ETS." Energy Policy 75: 100-106.
    Diewald, L., M. Prokopczuk, and C. W. Simen (2015). "Time-Variations in Commodity Price Jumps." Journal of Empirical Finance 31: 72-84.
    Duffie, D., J. Pan, and K. Singleton (2000). "Transform Analysis and Asset Pricing for Affine Jump-Diffusions." Econometrica 68(6): 1343-1376.
    Elliott, R. J., L. Chan, and T. K. Siu (2005). "Option Pricing and Esscher Transform under Regime Switching" Annals of Finance 1(4): 423-432.
    Engle, R. F. and V. K. Ng (1993). "Measuring and Testing the Impact of News on Volatility." The Journal of Finance 48(5): 1749-1778.
    Esscher, F. (1932). "On the Probability Function in the Collective Theory of Risk." Skandinavisk Aktuarietidskrift 15(3): 175-195.
    Eraker, B., M. Johannes, and N. Polson (2003). "The Impact of Jumps in Volatility and Returns." The Journal of Finance 58(3): 1269-1300.
    Gerber, H. U. (1974). "On Additive Premium Calculation Principles." ASTIN Bulletin 7(3): 215-222.
    Gerber, H. U., E. S. W. Shiu (1994). "Option Pricing by Esscher Transforms." Transactions of Society of Actuaries 46: 99-140.
    Godsill, S., A. Doucet, and M. West (2004). "Monte Carlo Smoothing for Non-Linear Time Series." Journal of the Acoustical Society of America 99(465): 156-168.
    Goovaerts, M. J., F. De Vijlder, and J. Haezendonck (1984). "Insurance Premiums." North Holland Publishing, Amsterdam.
    Goovaerts, M. J., R. J. A. Laeven (2008). "Actuarial Risk Measures for Financial Derivative Pricing." Insurance: Mathematics and Economics 42(2): 540-547.
    Heston, S. L. (1993). "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options." Review of Financial Studies 6(2): 327-343.
    Hilliard, J. E. and J. Reis (1998). "Valuation of Commodity Futures and Options Under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot." The Journal of Financial and Quantitative Analysis 33(1): 61-86.
    Hintermann, B. (2010). "Allowance Price Drivers in the First Phase of the EU ETS." Journal of Environmental Economics and Management 59(1): 43-56.
    Hu, F. and J. V. Zidek (2002). "The Weighted Likelihood." Canadian Journal of Statistics 30(3): 347-371.
    Johannes, M. S., N. G. Polson, and J. R. Stroud (2009). "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices." Review of Financial Studies 22(7): 2759-2799.
    Kaeck, A. and C. Alexander (2013). "Stochastic Volatility Jump-Diffusions for European Equity Index Dynamics." European Financial Management 19(3): 470-496.
    Kitagawa, G. and S. Sato (2001). "Monte Carlo Smoothing and Self-Organising State-Space Model, Sequential Monte Carlo Methods in Practice, 177-195. Springer-Verlag, NY.

    Koch, N., S. Fuss, G. Grosjean, and O. Edenhofer (2014). "Causes of the EU ETS Price Drop: Recession, CDM, Renewable Policies or A Bit of Everything?-New Evidence." Energy Policy 73: 676-685.
    Kou, S., C. Yu, and H. Zhong (2016). "Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis." Management Science.
    Lopes, H. F. and R. S. Tsay (2011). "Particle Filters and Bayesian Inference in Financial Econometrics." Journal of Forecasting 30(1): 168-209.
    Manoliu, M. and S. Tompaidis (2002). "Energy Futures Prices: Term Structure Models with Kalman Filter Estimation." Applied Mathematical Finance 9(1): 21-43.
    Merton, R. C. (1976). "Option Pricing When Underlying Stock Returns Are Discontinuous." Journal of Financial Economics 3(1-2): 125-144.
    Nelson, D. B. (1991). " Conditional Heteroskedasticity in Asset Returns: A New Approach." Econometrica 59(2): 347-370.
    Ornthanalai, C. (2014). "Lévy Jump Risk: Evidence from Options and Returns." Journal of Financial Economics 112(1): 69-90.
    Paolella, M. S. and L. Taschini (2008). "An Econometric Analysis of Emission Allowance Prices." Journal of Banking & Finance 32(10): 2022-2032.
    Pillay, E. and J. G. O’Hara (2011). "FFT Based Option Pricing Under A Mean Reverting Process with Stochastic Volatility and Jumps." Journal of Computational and Applied Mathematics 235(12): 3378-3384.
    Pitt, M. K. and N. Shephard (1999). "Filtering via Simulation: Auxiliary Particle Filters." Journal of the American Statistical Association 94(446): 590-599.
    Qi, S., B. Wang, and J. Zhang (2014). "Policy Design of the Hubei ETS Pilot in China." Energy Policy 75: 31-38.
    Rittler, D. (2012). "Price Discovery and Volatility Spillovers in the European Union Emissions Trading Scheme: A High-Frequency Analysis." Journal of Banking & Finance 36(3): 774-785.
    Rubin, J. D. (1996). "A Model of Intertemporal Emission Trading, Banking, and Borrowing." Journal of Environmental Economics and Management 31(3): 269-286.
    Schmitz, A., Z. Wang, and J. H. Kimn (2014). "A Jump Diffusion Model for Agricultural Commodities with Bayesian Analysis." Journal of Futures Market 34(3): 235-260.
    Schwartz, E. S. (1997). "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging." Journal of Finance 52(3): 923-973.
    Seifert, J., M. Uhrig-Homburg, and M. Wagner (2008). "Dynamic Behavior of CO2 Spot Prices." Journal of Environmental Economics and Management 56(2): 180-194.
    Sørensen, C. (2002). "Modeling Seasonality in Agricultural Commodity Futures." Journal of Futures Markets 22(5): 395-426.
    Tang, K. (2012). "Time-Varying Long-Run Mean of Commodity Prices and the Modeling of Futures Term Structures." Quantitative Finance 12(5): 781-790.
    Trolle, A. B. and E. S. Schwartz (2009). "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives." Review of Financial Studies 22(11): 4423-4461.
    Uhrig-Homburg, M. and M. Wagner (2009). "Futures Price Dynamics of CO2 Emission Allowances: An Empirical Analysis of the Trial Period." The Journal of Derivatives 17(2): 73-88.
    Wong, H. Y. and Y. W. Lo (2009). "Option Pricing with Mean Reversion and Stochastic Volatility." European Journal of Operational Research 197(1): 179-187.
    Zwillinger, D. (1992). Handbook of Differential Equations. Academic Press, Boston.
    描述: 博士
    國立政治大學
    金融學系
    99352504
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0993525043
    資料類型: thesis
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    504301.pdf2775KbAdobe PDF270檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋