Reference: | 1.魏應澤 , ( 1982 ) . 數理統計學 , 第一冊 , 機率分布論 , 增訂版 , 第七章。 2.黃登源、王敏男 , ( 1977 ) . 應用廻歸分析 , p. 42 , 43 . 3.王敏男、黃登源、蔡德慶 , ( 1978 ) .初等統計學 , 下册 , 第九章。 4. BECKMAN, R. J. and Cook, R. D. (1983). Outlier… … s。 Technometrics, 25, p. 119-149. 5. BLISS, C. I., COCHRAN, W. G. and TUKEY, J. W. (1956). Aregection criterion based upon the range. Biometrics, 43, p.418-422. 6. DIXON, W. J.(1960). Simplified estimation from censored normal samples. Annals of mathematical statistics, 31, p.385-391. 7. DIXON, W. J. ( 1957 ) . Estimates of the mean and standard deviation of a normal population. Annals of mathematical statistics, 28, p.806-809. 8. Grubbs, F. E. ( 1950 ) . Sample criteria for testing outlying observations. Annals of mathematical statistics, 21, p.27-68. 9. GUPTA, A. K. ( 1952) . Estimation of the mean a censored sample. Biometrika, 39, p.260-273. 10. HAWKINS, D. M. (1979). Identification of outliers. 11. IRWIN, J. O. (1925a) . On a criterion for the rejection of outlying observations. Biometrika, 17, p.238-250. 12. IRWIN, J. O. (1925b). The further theory of francis caltons individual difference problem. Biometrika, 17, p.100-128. 13. KENNEDY, Jr. W. J. and GENTLE, J. E. Statistical computing. p.200-209. 14. LLOYD, E. H. ( 1952). Least-Squares estimation of location and scale parameters using order statistics. Biometrika, 39, p.88-95. 15. PATNAIK, P. B. (1950). The use of mean range as an estimator of variance in statistical tests. Biometrika, 37, p.78-87. 16. TEICHROEW. D. (1956 ). Tables of expected values of order statistics and products of order statistics for samples of size twenty and Less from the normal distribution. Annals of mathematical statistics, 27, p.410-426. 17. Thompson, W. R. (1935 ). On a criterion for the ratio of deviation to sample standard deviation. Annals of mathematical statistics, 6, p. 214-219. 18. Thomson, G. W. ( 1953 ). Scale factors and degrees of freedom for small sample size for χ-approximation to the range. Biometrika, 40, p.449-450. 19. TUKEY, J. ( 1977 ). Exploratory data analysis. Addison-Wesley. |