Reference: | 1. Balas. E. “An additive algorithm for solving linear programs with zero-one variables”, Oper. Res. 13 ( 1965 ) : 517-546. 2. Cabot, V. A. “ An enumeration algorithm for knapsack problems ” , Oper. Res. 18 ( 1970 ) : 306-311. 3. Cooper. L. & D. I. Steinberg, Methods and Applications of Linear Programming, Philadelphia, London, Toronto, (1974 ). 4. Dantzig, G. B. “Discrete variable extremum problems ” , Oper. Res. 5 ( 1957 ) 266-277. 5. Denardo, E. V. Dynamic Programming : Models and Applications, Prentice-Hall, Englewood Cliffs, New Jersey, ( 1982 ). 6. Garfinkel, R. & G. Nemhauser, Integer Programming , J. Wiley, New York, ( 1970 ). 7. Gilmore. P. C. & R. E. Gomory, “ A linear programming approach to the cutting stock problem ” , Oper. Res. 11 ( 1961 ) : 849-859. 8. Greenberg, H. & R. L. Hegerich, “ A branch search algorithm for the knapsack problem ” , Management Sci. 16 ( 1971 ) : 327-332. 9. Hu. T. C. Integer Programming and Network Flows, Addison-Wesley, Reading, Massachusetts, ( 1969 ). 10. Ingargiola, G. P. & J. F. Korsh, “ Reduction algorithm for zero-one single knapsack problems” , Management Sci. 20 ( 1973 ) 460-463. 11. Kolesar, P. J. “ A branch and bonnd algorithm for the knapsack problem ”, Management Sci. 22 ( 1967 ) : 723-735. 12. Posner, M. E. “The decomposition of nonlinear problems”, Mathematical Programming. 15 ( 1978 ) : 360-362. 13. Posner. M. E. “The continuous collapsing knapsack problem” , Mathematical Programming 26 ( 1983 ) : 76-86. 14. Posner, M. E. & M. Guignard, “The 0-1 collapsing knapsack problem” , Mathematical Programming 15 ( 1978 ) : 155- 161. 15. Rochafellar, R. T. , Convex Analysis, Princeton U. Press, N. J. ( 1969 ). 16. Ross, C. T. “ A branch and bound algorithm for the generalized assignment problem ”, Mathematical Programming 8 ( 1975 ) : 91-103. 17. Taha, H. A., Integer Programming : Theory, Applications, and Computations, University of Arkansas Fayetteville. Arkansas, ( 1975 ). |