English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51918005      Online Users : 425
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/103401


    Title: The Wisdom of Crowds in Action: Forecasting Epidemic Diseases with a Web-based Prediction Market System
    Authors: 童振源
    Li, Eldon;Tung, Chen-yuan;Chang, Thomas
    Contributors: 國發所
    Keywords: Prediction market system;Logarithmic market scoring rules;Infectious diseases;Epidemic prediction;Real-time update;Web-based system;Wisdom of crowds
    Date: 2016-08
    Issue Date: 2016-11-03 18:01:50 (UTC+8)
    Abstract: Background : The quest for an effective system capable of monitoring and predicting the trends of epidemic diseases is a critical issue for communities worldwide. With the prevalence of Internet access, more and more researchers today are using data from both search engines and social media to improve the prediction accuracy. In particular, a prediction market system (PMS) exploits the wisdom of crowds on the Internet to effectively accomplish relatively high accuracy. Objective : This study presents the architecture of a PMS and demonstrates the matching mechanism of logarithmic market scoring rules. The system was implemented to predict infectious diseases in Taiwan with the wisdom of crowds in order to improve the accuracy of epidemic forecasting. Methods : The PMS architecture contains three design components: database clusters, market engine, and Web applications. The system accumulated knowledge from 126 health professionals for 31 weeks to predict five disease indicators: the confirmed cases of dengue fever, the confirmed cases of severe and complicated influenza, the rate of enterovirus infections, the rate of influenza-like illnesses, and the confirmed cases of severe and complicated enterovirus infection. Results : Based on the winning ratio, the PMS predicts the trends of three out of five disease indicators more accurately than does the existing system that uses the five-year average values of historical data for the same weeks. In addition, the PMS with the matching mechanism of logarithmic market scoring rules is easy to understand for health professionals and applicable to predict all the five disease indicators. Conclusions: The PMS architecture of this study affords organizations and individuals to implement it for various purposes in our society. The system can continuously update the data and improve prediction accuracy in monitoring and forecasting the trends of epidemic diseases. Future researchers could replicate and apply the PMS demonstrated in this study to more infectious diseases and wider geographical areas, especially the under-developed countries across Asia and Africa.
    Relation: International Journal of Medical Informatics, Vol.92, pp.35-43
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.ijmedinf.2016.04.014
    DOI: 10.1016/j.ijmedinf.2016.04.014
    Appears in Collections:[國家發展研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    412012.pdf1461KbAdobe PDF2849View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback