English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50916423      Online Users : 799
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/101133


    Title: 熱電材料Ag(Sb1-xGex)Te2及AgSb(Te2-xSex)的物性研究
    Physical Properties of the Thermoelectric Material of Ag(Sb1-xGex)Te2 and AgSb(Te2-xSex)
    Authors: 林垣豪
    Lin, Yuan Hao
    Contributors: 陳洋元
    Chen, Yang Yuan
    林垣豪
    Lin, Yuan Hao
    Keywords: 熱電材料
    高熱電優值
    低熱傳導系數
    Thermoelectric materials
    High ZT value
    Low thermal conductivity
    Date: 2016
    Issue Date: 2016-09-02 00:15:03 (UTC+8)
    Abstract: AgSbTe2是一種相當好的熱電材料,具有相當低的熱傳導係數以及接近於1的熱電優值(ZT值)。一些文獻中有提到此材料在約600 K左右會產生第二相。因此,在這篇論文中,我們希望能夠研究在不一樣比例摻雜的Ge、Se,使材料的熱電性質上的改變;爾後我們也希望藉由熱示差掃瞄卡量計(DSC(Differential Scanning Calorimeter))來驗證其他文獻中的結果:約600 K左右可以得到第二相。為了使樣品混和均勻,在製備樣品時,利用熔融及搖勻(Melting and Shaking)的方法,也就是將樣品熔融之後進行搖勻的動作,在樣品燒結成塊材之前,得到相對較均勻的樣品。我們一共使用了5種的比例合成Ag(Sb1-xGex)Te2、AgSb(Te2-xSex),分別為:x = 0.01~0.05。在樣品燒結完成以後,將樣品進行破管,磨成細粉,為了在之後利用電漿火花燒結(SPS (Spark Plasma Sintering))壓製出我們所需要的樣品。進行量測時,我們利用了雷射熱擴散量測系統(LFA(Laser Flash Apparatus))以及賽貝克係數與電阻率量測系統ZEM-3得到我們所需要的熱傳導係數、電傳導係數、賽貝克係數(Seebeck係數)、以及功率因子(Power factor),利用這幾個得到的參數計算,得到我們所需要的熱電優值(ZT值)。其後我們也為了知道是否在600 K左右得到相變,利用了熱示差掃瞄卡量計(DSC(Differential Scanning Calorimeter))來做量測,在600-630 K左右我們兩種摻雜的樣品得到了第二相的變化,使熱傳導係數大幅下降。最後我們得到最高的熱電優值為摻雜Ge比例0.03的樣品,在680 K左右可以得到熱電優值為2.5;Se摻雜比例0.05的樣品,在660 K可以達到2.02左右。
    Reference: [1] Dale H., Roger L., and Donald L., Improved understanding of the spark plasma sintering process, Journal of Applied Physics Vol. 117, 2015
    [2] U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process, Materials Science and Engineering A Vol. 394, 2005
    [3] Avinna M., Sarama B., Shahid A., Simple apparatus to measure Seebeck coefficient up to 900 K, Measurement Vol. 68, 2015
    [4] Shiho I., Eric S. T., Aaron L., and G. Jeffrey S., A high temperature apparatus for measurement of the Seebeck coefficient, Review of Scientific Instruments Vol. 82, 2011
    [5] 蔡明原,PbTe、Pb0.78Sn0.22Te與Ge0.5Pb0.25Sn0.25Te的熱電物性
    研究, 國立臺灣師範大學
    [6] P.M. WYZGA and K.T. WOJCIECHOWSKI, Analysis of the Influence of Thermal Treatment on the Stabilityof Ag1-xSb1+xTe2+x and Se-Doped AgSbTe2, Journal of ELECTRONIC MATERIALS, Vol. 45, 2016
    [7] James R.S., J.Yang, X.Shi, H.Wang , A.A.Wereszczak, Transportandmechanicalpropertyevaluationof(AgSbTe)1-x(GeTe)x (x = 0.80, 0.82,0.85,0.87,0.90), Journal of Solid State Chemistry Vol. 182, 2009
    [8] E. M. Levin, B. A. Cook, K. Ahn, M. G. Kanatzidis and K. Schmidt-Rohr, Electronic inhomogeneity and Ag:Sb imbalance of Ag1−yPb18Sb1+zTe20 high-performance thermoelectrics elucidated by 125Te and 207Pb NMR, PHYSICAL REVIEW B 80, 2009
    [9] P. A. Sharma, J. D. Sugar, and D. L. Medlin, Influence of nanostructuring and heterogeneous nucleation on the thermoelectricfigure of merit in AgSbTe2, Journal of Applied Physics 107, 2010
    [10] Baoli D., Han L., Jingjing X., Xin T., and Ctirad U., Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound, Chem. Mater, 2010
    [11] B.L. Du, H. Li, X.F. Tang, Enhanced thermoelectric performance in Na-doped p-type nonstoichiometric AgSbTe2 compound, Journal of Alloys and Compounds 509, 2011
    [12] D.L. Medlin and J.D. Sugar, Interfacial defect structure at Sb2Te3 precipitates in the thermoelectric compound AgSbTe2, Scripta Materialia 62, 2010
    [13] S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, X.B. Zhao, Phase compositions, nanoscale microstructures and thermoelectric properties in Ag2-ySbyTe1+y alloys with precipitated Sb2Te3 plates, Acta Materialia 58, 2010
    [14] S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, X.B. Zhao, Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates, Journal of Alloys and Compounds 499, 2010
    [15] Jingjing X., H. Li, Baoli D., Xin feng T., Qingjie Z. and Ctirad U., High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2, Journal of Materials Chemistry, 2010
    [16] 徐静静, 杜保立, 张文浩, 唐新峰, 武汉理工大学材料复合新技术国家重点实验室, 武汉, AgSbTe2 热电化合物的超声化学法合成, Journal of Inorganic Materials Vol. 25, 2010
    [17] Baoli D., Han L., Jingjing X.,Xinfeng T., Ctirad U., Enhanced thermoelectricperformanceandnovelnanoporesinAgSbTe2 prepared by meltspinning, Journal of Solid State Chemistry 184, 2011
    [18] H. J. Wu, S. W. Chen, Phase equilibria of Ag–Sb–Te thermoelectric materials, Acta Materialia 59, 2011
    [19] 杜保立, 李涵, 唐新峰, Na/Se 掺杂p-型AgSbTe2化合物热电性能研究, Journal of Inorganic Materials Vol. 26, 2011
    [20] B. DU, J. XU, W. ZHANG, and X. TANG, Impact of In Situ Generated Ag2Te Nanoparticles on the Microstructure and Thermoelectric Properties of AgSbTe2 Compounds, Journal of ELECTRONIC MATERIALS, Vol. 40, 2011
    [21] M. K. Han, J. Androulakis, S. J. Kim, and M. G. Kanatzidis, Lead-Free Thermoelectrics: High Figure of Merit in p-type AgSnmSbTem+2, Advanced Energy Materials, 2012
    [22] Zhang H.(张贺), Luo J.(骆军), Zhu H. T.(朱航天), Liu Q. L.(刘泉林),
    Liang J. K.(梁敬魁), Li J. B.(李静波), and Liu G. Y.(刘广耀), Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds, Chin. Phys. B Vol. 21, 2012
    [23] H. j. Wu, S. W. Chen, Teruyuki Ikeda, and G. Jeffrey Snyder, Reduced thermal conductivity in Pb-alloyed AgSbTe2 thermoelectric materials, Acta Materialia 60, 2012
    [24] Rajeshkumar Mohanraman, Raman Sankar, F. C. Chou, C. H. Lee, and Y. Y. Chen, Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds, Journal of Applied Physics 114, 2013
    [25] Q. Zhang, Y. C. Lan, S. l. Yang, F. Cao, M. l. Yao, C. Opeil, D. Broido, G. Chen, Z. f. Ren, Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20-xClx, Nano Energy, 2013
    [26] Yaron Amouyal, On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications, Computational Materials Science 78, 2013
    [27] J. Ma, O. Delaire, A. F. May, C. E. Carlton, M. A. McGuire, L. H. VanBebber, D. L. Abernathy, G. Ehlers, T. Hong, A. Huq, Wei Tian, V. M. Keppens, Y. Shao-Horn and B. C. Sales, Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2, NATURE NANOTECHNOLOGY VOL 8, 2013
    [28] C. E. Carlton, R. D. Armas, Jie Ma, Andrew F. May, O. Delaire, and Yang S. H., Natural nanostructure and superlattice nanodomains in AgSbTe2, Journal of Applied Physics 115, 2014
    [29] N. Rezaei, S. J. Hashemifar, and H. Akbarzadeh, Thermoelectric properties of AgSbTe2 from first-principles calculations, Journal of Applied Physics 116, 2014
    [30] J. Ma, O. Delaire, E. D. Specht, A. F. May, O. Gourdon, J. D. Budai, M. A. McGuire, T. Hong, D. L. Abernathy, G. Ehlers, and E. Karapetrova, Phonon scattering rates and atomic ordering in Ag1−xSb1+xTe2+x (x = 0,0.1,0.2) investigated with inelastic neutron scattering and synchrotron diffraction, PHYSICAL REVIEW B 90, 2014
    [31] M. D. Nielsen, C. M. Jaworski, and J. P. Heremans, Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping, AIP Advances 5, 2015
    [32] M. Aspiala, P. Taskinen, Thermodynamic study of the Ag–Sb–Te system with an advanced EMF method, J. Chem. Thermodynamics 93, 2016
    Description: 碩士
    國立政治大學
    應用物理研究所
    103755009
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103755009
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500901.pdf2522KbAdobe PDF2213View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback