English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51163560      Online Users : 891
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/101128
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/101128


    Title: 以分解機器為基礎之社群領袖偵測方法研究
    Discovering Community Leaders from Coauthor Network via Factorization Machines
    Authors: 林哲立
    Lin, Zhe Li
    Contributors: 蔡銘峰
    Tsai, Ming Feng
    林哲立
    Lin, Zhe Li
    Keywords: 機器學習
    分解機器
    社群網路
    Date: 2016
    Issue Date: 2016-09-02 00:13:24 (UTC+8)
    Abstract: 文提出了一種分析社群網路影響力於社群領袖偵測之方法。主要 目的在於透過機器學習中的分解機器方法了解社群網路的結構,此方 法進一步地了解社群網路之影響力分布,然後藉由此影響力的分析找 尋社群中的影響力領袖。 在過去的工作中,此類的社群網路分析研究 的問題通常使用機率模型來處理。除此之外,某些相關的工作會使用 基礎的圖論特徵像是圖中的節點或邊緣來幫助解決此類的問題。 雖然 過去的研究中已存在幾種方法來處理這類問題,但由於社群網路龐大 而且複雜,目前沒有精確且有效的機器學習方法能夠找出社群領袖。 在此工作中我們採用過去研究中從未嘗試過的分解機器學習技術來分 析此類圖論問題,透過此機器學習技術來找出社群領袖。在提出的這 套方法中,除了基本的網路結構外,社群網路中的人和其他物件的資 訊也都能透過分解機器學習技術中特徵的方式加入至影響力分析模型 中。此外,我們也提出了幾種不同的矩陣分解之隨機抽樣演算法來提 升效能以及精確度。最後,我們透過由 DBLP 蒐集而來的資料來進行 多項實驗,實驗結果顯示我們提出的方法即使在一個龐大且稀疏的社 群網路中仍還是可以有效地找出社群影響力領袖。
    Reference: 1] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
    [2] L. Liu, J. Tang, J. Han, and S. Yang. Learning influence from heterogeneous social networks. Data Mining and Knowledge Discovery, 25(3):511–544, 2012.
    [3] J. L. Myers, A. Well, and R. F. Lorch. Research design and statistical analysis. Routledge, 2010.
    [4] S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 33–41, New York, NY, USA, 2012. ACM.
    [5] S. Rendle. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, pages 995–1000, Washington, DC, USA, 2010. IEEE Computer Society.
    [6] S. Rendle. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May 2012.
    [7] X. Shuai, Y. Ding, J. Busemeyer, S. Chen, Y. Sun, and J. Tang. Modeling indirect influence on twitter. Int. J. Semant. Web Inf. Syst., 8(4):20–36, Oct. 2012.
    [8] L. Terveen and W. Hill. Beyond recommender systems: Helping people help each other. 2001.
    [9] M.-F.Tsai,C.-W.Tzeng,andA.L.P.Chen.Discoveringleadersfromsocialnetwork by action cascade. In Proceedings of the Fifth Workshop on Social Network Systems, SNS ’12, pages 12:1–12:2, New York, NY, USA, 2012. ACM.
    [10] M.-F. Tsai, C.-J. Wang, and Z.-L. Lin. Social influencer analysis with factorization machines. In Proceedings of the ACM Web Science Conference, WebSci ’15, pages 50:1–50:2, New York, NY, USA, 2015. ACM.
    [11] K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-rank net- works using multi-dimensional hawkes processes. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, pages 641–649, 2013.
    Description: 碩士
    國立政治大學
    資訊科學學系
    101753022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101753022
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302201.pdf779KbAdobe PDF2220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback