|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 114205/145239 (79%)
Visitors : 52982494
Online Users : 598
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/100797
|
Title: | COMPARING THE HIGHER ORDER IONOSPHERIC REFRACTION EFFECTS ON GPS PRECISE POINT POSITIONING ACCURACIES IN DIFFERENT REGIONS AND SEASONS - A CASE STUDY OF TAIWAN REGION |
Authors: | 林老生 Hung, Wan-Chi;Lin, Lao-Sheng;Teng, Hung-Chao |
Contributors: | 地政系 |
Keywords: | Global Positioning System (GPS);Precise Point Positioning (PPP);Higher Order Ionospheric Refraction Effects;Dual Frequency |
Date: | 2016-06 |
Issue Date: | 2016-08-29 14:34:13 (UTC+8) |
Abstract: | The precise point positioning (PPP) accuracy can reach centimeter level using global positioning system (GPS) dual-frequency data. However, centimeter level accuracy is insufficient for high accuracy applications, such as control surveying, deformation monitoring, etc. To improve the accuracy of PPP, higher order ionospheric refraction effects must be taken into account. The purpose of this research is to investigate the effects on PPP accuracies caused by higher order ionospheric refraction errors. The first step is to estimate the higher order ionospheric refraction terms of GPS dual-frequency data. And then, correcting the GPS RINEX file accordingly. At last, evaluating the accuracy of PPP accuracies after higher order ionospheric refraction errors are corrected. There are two programs applied in this paper: RINEX_HO and gLAB(global navigation satellite system-LABoratory). RINEX_HO, developed by São Paulo State University in Brazil, can estimate higher order ionospheric refraction terms and produce a corresponding corrected observation file. gLAB, developed by gAGE(Research group of Astronomy and GEomatics Technical University of Catalonia in Spain), can perform precise point positioning and calculate position errors. The following data sets of Taiwan region are tested, including the GPS observation data provided by Civil-NET, precise ephemeris and other data from international global navigation satellite system service (IGS). And the period of these data are a few days before and after the spring equinox, summer solstice, autumn equinox and winter solstice of year 2014. The detailed theory, experiment methods and preliminary result will be presented in this paper. |
Relation: | Proceedings of ISRS 2016, The Korean Society of Remote Sensing (KSRS), pp.p008-1~4 |
Data Type: | conference |
Appears in Collections: | [地政學系] 會議論文
|
Files in This Item:
File |
Description |
Size | Format | |
410602.pdf | | 160Kb | Adobe PDF2 | 500 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.