Reference: | [ 1 ] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.Journal of Machine Learning Research, 3:993–1022,January 2003.
[ 2 ] DeLong, J. B., A. Shleifer, L. H. Summers, and R. J. Waldmann, “Noise trader risk in financial markets,”Journal of Political Economy, 98,703-738, 1990
[ 3 ] Feldman, Techniques and applications for sentiment analysis, 2013
[ 4 ] Reality Check for the Chinese Microblog Space: A Random Sampling Approach,2012
[ 5 ] Johan Bollen1, Huina Mao1, Xiao-Jun Zeng. Twitter mood predicts the stock market. 2010
[ 6 ] Chaovalit and Zhou ,Movie Review Mining: a Comparison between Supervised and Unsupervised Classification Approaches,2005
[ 7 ] Ahmad, K., Oliveira, P. C. F. D., Manomaisupat, P., Casey, M. & Taskaya, T. (2002). Description of events: An analysis of keywords and indexical names. Proceedings of the third international conference on language resources and
evaluation, LREC 2002: Workshop on event modelling for multilingual document linking, 29-35
[ 8 ] Liu, “Sentiment Analysis and Opinion Mining,” Synthesis Lectures on Human Language Technologies, vol. 5, no. 1, pp. 1–167, May 2012.
[ 9 ] Pang and Lee. Opinion mining and sentiment analysis, 2008
[ 10 ] Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-based Methods for Sentiment Analysis,” Comput. Linguist., vol. 37, no. 2, pp. 267–307, Jun. 2011.
[ 11 ] How Big Data Can Transform Your Understanding Of Your Customers
[ 12 ] Thorsten Joachims, SVM-Light Support Vector Machine, 2008
[ 13 ] Zheng and Y. Tian, “Chinese Web Text Classification System Model Based on Naive Bayes,” in 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE), pp. 1–4, 2010
[ 14 ] Support Vector Machines 簡介, 林宗勳,2015
[ 15 ] 劉奕廷, 全文運用財經文本情感分析於台灣電子類股價指數趨勢預測之研究,2015
[ 16 ] 林育龍, 對使用者評論之情感分析研究-以Google Play市集為例, 2014
[ 17 ] 李啟菁,王正豪. “中文部落格文章之意見分析”, 2010
[ 18 ] 郭俊桔、張育蓉,使用情緒分析於圖書館使用者滿意度之研究,2013
[ 19 ] 游和正、黃挺豪、陳信希, 領域相關詞彙極性分析及文件情緒分類之研究,2013
[ 20 ] 蕭瑞祥、姜青山, 部落格文章情感分析之研究,2012
[ 21 ] 李謦哲,應用FFCA結合情感分析探勘Facebook對議題之評論-以台灣2014九合一選舉為例,2014
[ 22 ] 鍾任明、李維平, 運用文字探勘於日內股價漲跌趨勢預測之研究,2007
[ 23 ] 洪崇洋, 以LDA 和使用紀錄為基礎的線上電子書主題趨勢發掘方法, 2012
[ 24 ] 王正豪,葉庭瑋, 基於意見詞修飾關係之微網誌情感分析技術,2013
[ 25 ] 劉鵬,滕家雨. 基於Spark的大規模文本k-means並行聚類算法, 2014
[ 26 ] 魏晶晶,吳曉吟. 電子商務產品評論多級情感分析的研究與實現, 2013
[ 27 ] 以情緒為中心之情境資訊觀察與評估
[ 28 ] 張士勛,以半導體產業為例-探討線性識別分析之最佳投資組合,2014
[ 29 ] 以URL 資訊和TF-IDF 為主的網路釣魚信件偵測,朱怡俊,2009
[ 30 ] 2015年中國股災,wiki,2015
[ 31 ] 證交所世界排名,wiki,2011
[ 32 ] 情感分析,wiki,2011
[ 33 ] Twitter 能否预测股市?,數位時代,2013
[ 34 ] 2013年Big Data市場規模,Wikibon,2013
[ 35 ] TFIDF,wiki,2007
[ 36 ] Lexalytics分析網友情感動向,協助品牌行銷策略,Find,2015
[ 37 ] 龔建彰, 基於新聞字詞漲跌極性之股價趨勢分類預測, 2014
[ 38 ] 張良杰. 巨量資料環境下之新聞主題暨輿情與股價關係之研究, 2014
[ 39 ] 郭敏華, 如何測量投資人情緒?, 2009
[ 40 ] 張日威,應用LDA進行Plurk主題分類及使用者情緒分析,2014
[ 41 ] 黃運高,王妍,邱武松,向林泓,趙學良.基于K-means和TF-IDF的中文藥名聚類分析, 2014 |