English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51091974      Online Users : 950
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/100453
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/100453


    Title: 無母數主成份迴歸與向前迴歸的比較
    Nonparametric Principal Components Regression Compared with Forward Regression
    Authors: 陳弘叡
    Chen, Hong Rui
    Contributors: 黃子銘
    Huang, Tzee Ming
    陳弘叡
    Chen, Hong Rui
    Keywords: 變數選取
    主成份分析法
    向前選取法
    無母數加成迴歸模型
    backfitting algorithm
    B-Spline
    積分絕對誤差
    Variable Selection
    Principal Component Analysis
    Forward Selection
    Nonparametric Additive Model
    Backfitting Alogorithm
    B-Spline
    Integral Absolute Error
    Date: 2016
    Issue Date: 2016-08-22 10:42:31 (UTC+8)
    Abstract: 在一般線性迴歸模型當中,當樣本數大於變數個數時候,我們是以最小平方法來估計迴歸參數。然而當變數個數大於樣本個數時,會造成共線性問題,導致參數無法估計,無法確認個別自變數對依變數有多大影響。為了解決共線性問題,我們透過變數選取來選取重要的變數,選取方法包含主成份分析法 (PCA)及向前選取法 (FS).

    我們使用的模型為無母數加成迴歸模型,透過 backfitting algorithm 來估計整個迴歸函數,個別函數則以無母數方法,使用B-Spline 來估計。我們把兩種選取方法應用在無母數加成模型裡,以積分絕對誤差為判斷標準,透過不同變數及不同生成模型類型的模擬,來判斷哪種配適選取方法較合適。模擬結果可以發現,多數情況下,FS的表現比PCA來得好。
    In a general linear regression model, when the sample size $n$ is greater than the number of variables $p$, it is common to use the least squares method to estimate the parameters in the regression model. When $n<p$, the parameters in the regression model cannot be estimated due to collinearity, so it is necessary to perform variable selection before estimating the parameters. In this thesis, I compare two variable selection methods in nonparametric additive regression. The first method is based on principal component analysis (PCA), and the second method is based on forward selection (FS). The integrated absolute error is used to evaluate the performance of these two methods in simulation studies. The simulation results show that FS performs better than PCA in most cases.
    Reference: [1]陳順宇.多變量分析,四版,華泰書局.收稿日期:民國99年,10,2005.
    [2]ZarahKatharinaSaxilAndersen.Boligpriseffektenafdenkben-havnskemetro.2009.
    [3]ErnielBarriosandJenniferUmali.Nonparametricprincipalcomponentsregression.InProceedingsofthe58thWorldCongressoftheInternationalStatisticalInstitute.
    [4]AndreasBuja,TrevorHastie,andRobertTibshirani.Linearsmoothersandadditivemodels.TheAnnalsofStatistics,pages453–510,1989.
    [5]NormanCliff.Theeigenvalues-greater-than-oneruleandthereliabilityofcomponents.Psychologicalbulletin,103(2):276,1988.
    [6]CarlDeBoor.Oncalculatingwithb-splines.JournalofAp-proximationtheory,6(1):50–62,1972.
    [7]MAEfroymson.Multipleregressionanalysis.Mathematicalmethodsfordigitalcomputers,1:191–203,1960.
    [8]JianqingFanandJianchengJiang.Generalizedlikelihoodratiotestsforadditivemodels.2005.
    [9]JeromeHFriedmanandWernerStuetzle.Projectionpursuitregression.JournaloftheAmericanstatisticalAssociation,76(376):817–823,1981.
    [10]HaroldHotelling.Analysisofacomplexofstatisticalvariablesintoprincipalcomponents.Journalofeducationalpsychology,24(6):417,1933.
    [11]KarlPearson.Liii.onlinesandplanesofclosestfittosys-temsofpointsinspace.TheLondon,Edinburgh,andDublinPhilosophicalMagazineandJournalofScience,2(11):559–572,1901.
    [12]IsaacJacobSchoenberg.Contributionstotheproblemofap-proximationofequidistantdatabyanalyticfunctions:Partb—ontheproblemofosculatoryinterpolation.asecondclassofanalyticapproximationformulae.QuarterlyofAppliedMathe-matics,4(2):112–141,1946.
    Description: 碩士
    國立政治大學
    統計學系
    103354028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103354028
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402801.pdf940KbAdobe PDF2240View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback