Reference: | 1. Andersen, L., and J. Sidenius. (2005). Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings. Journal of Credit Risk, 1, 29-70.
2. Bassamboo, A, S. Juneja, and A. Zeevi (2008). Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation. Operations Research, 56, 593-606.
3. Chiang, M. H, M. L. Yueh, and M.H. Hsieh (2007). An Efficient Algorithm for Basket Default Swap Valuation. Journal of Derivatives 15, 8-19.
4. Capriotti, L. (2008). Least-Squares Importance Sampling for Monte Carlo Security Pricing. Quantitative Finance 8, 485-497.
5. Chan, J C.C and D P. Kroese (2010). Efficient Estimation of Large Portfolio Loss Probabilities in T-Copula Models. European Journal of Operational Research 205, 361-367.
6. Chen, Z. , Q. Bao, S. Li and J. Chen (2012). Pricing CDO Tranches with Stochastic Correlation and Random Factor Loadings in a Mixture Copula Model . Applied Mathematics and Computation 219, 2909-2916.
7. Glasserman, P. (2004). Tail Approximations for Portfolio Credit Risk. The Journal of Derivatives 12, 24-42.
8. Glasserman, P. and J. Li (2005). Importance Sampling for Portfolio Risk. Management Science 51, 1643-1656.
9. Grundke, P. (2009). Importance Sampling for Integrated Market and Credit Portfolio Models. European Journal of Operational Research 194, 206-226.
10. Hull J. and A. White (winter 2004). Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation. The Journal of Derivatives, 8-23.
11. Kalemanove A., B. Schmid, and R. Werner (spring 2007). The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing. The Journal of Derivatives, 80-93.
12.Li, D. (2000) On Default Correlation: A Copula Function Approach. Journal of Fixed Income, 9, 43-54.
13. Lüscher A. (December 2005). Synthetic CDO Pricing Using the Double Normal Inverse Gaussian Copula with Stochastic Factor Loadings. Master Thesis, Zürich University of Mathematics.
14. Yang, R. , X. Qin and T. Chen (2009). CDO Pricing Using Single Factor M_(G-NIG) Copula Model with Stochastic Correlation and Random Loading. Journal of Mathematical Analysis and Applications 350, 73-80.
15. Zheng, H. (2006). Efficient Hybrid Methods for Portfolio Credit Derivatives. Quantitative Finance 6, 349-357. |