English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51575027      Online Users : 920
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/100355


    Title: 聚落體系形成之電腦模擬實驗--不同函數型態下的探討
    Other Titles: Computer Experiments on Formation of Settlement Systems: An Exploration Based on Multiple Functional Forms
    Authors: 于如陵;賴世剛
    Yu, Ju-Ling;Lai, Shih-Kung
    Keywords: 聚落體系;冪次法則;等級大小法則
    Settlement Systems;Power Law;Rank-Size Rule
    Date: 2004-11
    Issue Date: 2016-08-17 11:20:39 (UTC+8)
    Abstract: 本文是探討複雜理論對都市聚落體系空間分布之影響,試圖解釋何以都市聚落 體系會形成冪次現象(Power law)。所謂的冪次法則是指事物出現的規模與頻率間 的關係:物體的規模S和其出現次數,呈S-a的比例關係,而形成一個自成組織的體\\r 系。在先前的研究中曾指出,根據報酬遞增理論所設計的電腦模擬中,在均質平面 平面的假設下,會呈現出高度符合冪次現象的都市體系(于如陵,賴世剛,2001)。 本文在此一基礎上,將模型的假設條件放寬,使擴增為不同函數之報酬遞增型態下 的探討。 本研究基於複雜理論,設計電腦程式來模擬都市聚落體系之形成。本研究顯\\r 示,基於隨機成長的都市體系模擬結果,不論所依據的函數型態為何,大多數都高 度符合冪次法則。等級大小法則為冪次法則的特例,但符合冪次法則的機制,未必 符合等級大小法則。因此雖然等級大小法則已被廣為都市研究者奉為圭臬,在世界 各地加以應用,但其成立並非毫無條件。另外本研究認為,「先固定後遞減」可能是\\r 最符合真實世界的都市體系成長歷程的推動機制。
    This article explores the spatial distribution of urban settlements in the context of sciences of complexity. Specifically, it tries to explain why urban settlement patterns follow the Power Law. According to the Power Law, an object with the scale of S should occur in a frequency proportional to S-a. Besides, this relation is often observed in a self-organizing system. In our earlier research (Yu & Lai, 2001), we conducted computer simulations of self-organizing urban systems based on the principle of increasing returns and the assumption of a uniform plane. We found that urban settlement patterns fit the Power Law. In this research, we relaxed the assumptions of our previous model and expanded our analysis to account for different increasing return functions varying according to scale. According to our simulations, urban systems generated from a random growth model subject to increasing returns usually fit the Power Law regardless of the varied attraction coefficient function. Besides, the rank-size rule is only a special case of the Power Law. Hence, although the rank-size rule is widely accepted and applied by researchers around the world, its occurrence is not unconditional. Finally, we compared the results obtained from different functional forms and concluded that the outcome of the function with “first stationary and then decreasing” returns might be closest to the real-world urban growth experiences.
    Relation: 臺灣土地研究, 7(2), 71-99
    Journal of Taiwan land research
    Data Type: article
    Appears in Collections:[臺灣土地研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    7(2)-71-99.pdf154KbAdobe PDF2410View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback